Advertisement

Abstract

This paper describes a metric-based model for event segmentation of sensor data recorded by a mobile phone worn around subjects’ necks during their daily life. More specifically, we aim at detecting human daily event boundaries by analysing the recorded triaxial accelerometer signals and images sequence (lifelog data). In the experiments, different signal representations and three boundary detection models are evaluated on a corpus of 2 subjects over total 24 days. The contribution of this paper is three-fold. First, we find that using accelerometer signals can provide much more reliable and significantly better performance than using image signals with MPEG-7 low level features. Second, the models using the accelerometer data based on the world’s coordinates system can provide equally or even much better performance than using the accelerometer data based on the device’s coordinates system. Finally, our proposed model has a better performance than the state of the art system [1].

Keywords

Triaxial accelerometer Event segmentation Lifelog data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doherty, A.R., Smeaton, A.F.: Automatically Segmenting Lifelog Data into Events. In: WIAMIS 2008 - 9th International Workshop on Image Analysis for Multimedia Interactive Services (2008)Google Scholar
  2. 2.
    Doherty, A.R., Byrne, D., Smeaton, A.F., Jones, G.J.F., Hughes, M.: Investigating Keyframe Selection Methods in the Novel Domain of Passively Captured Visual Lifelogs. In: CIVR 2008: Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval, Niagara Falls, pp. 259–268. ACM (2008)Google Scholar
  3. 3.
    Takata, K., Ma, J., Apduhan, B.O., Huang, R., Jin, Q.: Modeling and Analyzing Individuals Daily Activities Using Lifelog. In: Second International Conference on Embedded Software and Systems, pp. 503–510. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  4. 4.
    Swallow, K.M., Zacks, J.M., Abrams, R.A.: Event Boundaries in Perception Affect Memory Encoding and Updating. Journal of Experimental Psychology. General 138(2), 236–257 (2009)CrossRefGoogle Scholar
  5. 5.
    Zacks, J.M., Swallow, K.M.: Event Segmentation. Current Directions in Psychological Science 16(2), 80–84 (2007)CrossRefGoogle Scholar
  6. 6.
    Doherty, A.R., Smeaton, A.F., Lee, K., Ellis, D.P.W.: Multimodal Segmentation of Lifelog Data. In: Proc. of RIAO 2007 (2007)Google Scholar
  7. 7.
    Nicole, J.M.Z., Speer, K., Swallow, K.M.: Activation of Human Motion Processing Areas During Event Perception. Cogn. Affect. Behav. Neurosci. 3, 335–345 (2003)CrossRefGoogle Scholar
  8. 8.
    Chen, C.: Information Visualisation and Virtual Environments. Springer, London (1999)CrossRefGoogle Scholar
  9. 9.
    Zacks, J.M., Braver, T.S., Sheridan, M.A., Donaldson, D.I., Snyder, A.Z., Ollinger, J.M., Buckner, R.L., Raichle, M.E.: Human Brain Activity Time-locked to Perceptual Event Boundaries. Nat. Neurosci. 4(6), 651–655 (2001)CrossRefGoogle Scholar
  10. 10.
    Zacks, J., Tversky, B., Iyer, G.: Perceiving, Remembering, and Communicating Structure in Events. Journal of Experimental Psychology: General 130, 29–58 (2001)CrossRefGoogle Scholar
  11. 11.
    Zacks, J.M., Swallow, K.M., Vettel, J.M., McAvoy, M.P.: Visual Motion and the Neural Correlates of Event Perception. Brain Research 1076(1), 150–162 (2006)CrossRefGoogle Scholar
  12. 12.
    Zacks, J.M., Speer, N.K., Swallow, K.M., Braver, T.S., Reynolds, J.R.: Event perception: A mind-brain perspective. Psychological Bulletin 133, 273–293 (2007)CrossRefGoogle Scholar
  13. 13.
    Zacks, J.M., Speer, N.K., Vettel, J.M., Jacoby, L.L.: Event Understanding and Memory in Healthy Aging and Dementia of the Alzheimer Type. Psychology and Aging 21(3), 466–482 (2006)CrossRefGoogle Scholar
  14. 14.
    Newtson, D., Engquist, G.: Foundations of attribution: The Perceptual Organization of Ongoing Behavior. Journal of Experimental Social Psychology 12(5), 436–450 (1976)CrossRefGoogle Scholar
  15. 15.
    Newtson, D.: Foundations of attribution: The perception of ongoing behavior. New Directions in Attribution Research, 223–248 (1976)Google Scholar
  16. 16.
    Zacks, J.M., Kumar, S., Abrams, R.A., Mehta, R.: Using Movement and Intentions to Understand Human Activity. Cognition 112(2), 201–216 (2009)CrossRefGoogle Scholar
  17. 17.
    Newtson, D., Engquist, G.A., Bois, J.: The Objective Basis of Behavior Units. Journal of Personality and Social Psychology 35(12), 847–862 (1977)CrossRefGoogle Scholar
  18. 18.
    Wu, P., Peng, H.-K., Zhu, J., Zhang, Y.: SensCare: Semi-automatic Activity Summarization System for Elderly Care. In: Zhang, J.Y., Wilkiewicz, J., Nahapetian, A. (eds.) MobiCASE 2011. LNICST, vol. 95, pp. 1–19. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    ÓConaire, C., O’Connor, N.E., Smeaton, A.F., Jones, G.J.F.: Organising a Daily Visual Diary Using Multifeature Clustering. Optical Society of America (2007)Google Scholar
  20. 20.
    Chennuru, S., Chen, P.-W., Zhu, J., Zhang, J.Y.: Mobile Lifelogger – Recording, Indexing, and Understanding a Mobile User’s Life. In: Gris, M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 263–281. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Himberg, J., Korpiaho, K., Mannila, H., Tikanmäki, J., Toivonen, H.T.: Time Series Segmentation for Context Recognition in Mobile Devices, pp. 203–210 (2001)Google Scholar
  22. 22.
    Nguyen, A., Moore, D., McCowan, I.: Unsupervised Clustering of Free-living Human Activities Using Ambulatory Accelerometry. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 4895–4898. IEEE (2007)Google Scholar
  23. 23.
    Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur, N., Wood, K.: SenseCam: A Retrospective Memory Aid. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Chen, P., Chennuru, S., Zhang, Y.: A Language Approach to Modeling Human Behavior. In: Proc. Seventh Intl. Conf. Language Resources and Evaluation (2010)Google Scholar
  25. 25.
    Hori, T., Aizawa, K.: Context-based Video Retrieval System for the Life-log Applications. In: Proceedings of the 5th ACM SIGMM International Workshop on Multimedia Information Retrieval, MIR 2003, New York, NY, USA, pp. 31–38 (2003)Google Scholar
  26. 26.
    Kim, I.-J., Ahn, S.C., Ko, H., Kim, H.-G.: Automatic Lifelog Media Annotation based on Heterogeneous Sensor Fusion. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 2008, pp. 703–708 (August 2008)Google Scholar
  27. 27.
    Bao, L., Intille, S.S.: Activity Recognition from User-annotated Acceleration Data, pp. 1–17. Springer (2004)Google Scholar
  28. 28.
    Chen, S.S., Gopalakrishnan, P.S.: Speaker, Environment and Channel Change Detection and Clustering via the Bayesian Information Criterion, pp. 127–132 (1998)Google Scholar
  29. 29.
    Montague, M., Aslam, J.: Relevance Score Normalization for Metasearch. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, pp. 427–433. ACM (2001)Google Scholar
  30. 30.
    Lindeberg, T.: Scale-space theory: A Basic Tool for Analysing Structures at Different Scales. Journal of Applied Statistics, 224–270 (1994)Google Scholar
  31. 31.
    Zochová, P., Radová, V.: Modified Distbic Algorithm for Speaker Change Detection. In: Eurospeech, pp 1:3073–1:3076 (2005)Google Scholar
  32. 32.
    Ajmera, J., Mccowan, I., Bourlard, H.: Robust Speaker Change Detection. IEEE Signal Process. Lett. 11, 649–651 (2004)CrossRefGoogle Scholar
  33. 33.
    Räsänen, O.J., Laine, U.K., Altosaar, T.: An Improved Speech Segmentation Quality Measure: the R-Value. In: INTERSPEECH, pp. 1851–1854 (September 2009)Google Scholar
  34. 34.
    Bouten, C., Koekkoek, K., Verduin, M., Kodde, R., Janssen, J.: A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity. IEEE Transactions on Biomedical Engineering 44(3), 136–147 (1997)CrossRefGoogle Scholar
  35. 35.
    Doherty, A.: Providing Effective Memory Retrieval Cues through Automatic Structuring and Augmentation of a Lifelog of Images (2008)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Yuwen Zhuang
    • 1
  • Mikhail Belkin
    • 1
  • Simon Dennis
    • 2
  1. 1.Department of Computer Science and EngineeringOhio State UniversityColumbusUSA
  2. 2.Department of PsychologyOhio State UniversityColumbusUSA

Personalised recommendations