Personalized Energy Consumption Modeling on Smartphones

  • Yifei Jiang
  • Abhishek Jaiantilal
  • Xin Pan
  • Mohammad A. A. H. Al-Mutawa
  • Shivakant Mishra
  • Larry Shi
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 110)


Energy has emerged as a key limitation in smartphone usage. As a result, optimizing power consumption has become a key design issue in building services and applications for smartphones. Understanding user behavior and its impact on energy consumption of smartphones is a key step for addressing this problem. This paper provides an in-depth study of user behavior and energy consumption of smartphones by analyzing smartphone data collected from twenty smartphone users over a period of three months. In particular, correlations between power consumption and factors such as time of day, user’s location, remaining battery power, recent phone usage history, and phone’s idle and active states have been studied. The results show varied levels of correlations between a user’s phone usage and these factors, and can be used to model and predict smartphone power consumption.


mobile computing power usage mobile power usage user study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal Ubiquitous Computing 7(5), 275–286 (2003)CrossRefGoogle Scholar
  2. 2.
    Banerjee, N., Rahmati, A., Corner, M.D., Rollins, S., Zhong, L.: Users and batteries: interactions and adaptive energy management in mobile systems. In: UbiComp 2007 (2007)Google Scholar
  3. 3.
    Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: USENIX ATC (2010)Google Scholar
  4. 4.
    Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: MobiSys (2010)Google Scholar
  5. 5.
    Hightower, J., Consolvo, S., LaMarca, A., Smith, I.E., Hughes, J.: Learning and recognizing the places we go. In: ACM Ubicomp, pp. 159–176 (2005)Google Scholar
  6. 6.
    Kang, J.H., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from traces of locations. ACM Mobile Computing Communication Review 9(3) (2005)Google Scholar
  7. 7.
    Kim, D.H., Hightower, J., Govindan, R., Estrin, D.: Discovering semantically meaningful places from pervasive rf-beacons. In: ACM Ubicomp (2009)Google Scholar
  8. 8.
    Kim, D.H., Kim, Y., Estrin, D., Srivastava, M.B.: SensLoc: Sensing everyday places and paths using less energy. In: ACM SenSys (2010)Google Scholar
  9. 9.
    Laasonen, K., Raento, M., Toivonen, H.: Adaptive On-Device Location Recognition. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 287–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ma, Y., Hankins, R., Racz, D.: iloc: a framework for incremental location-state acquisition and prediction based on mobile sensors. In: CIKM (2009)Google Scholar
  11. 11.
    Rahmati, A., Qian, A., Zhong, L.: Understanding human-battery interaction on mobile phones. In: MobileHCI (2007)Google Scholar
  12. 12.
    Rahmati, A., Zhong, L.: Fast track article: Human battery interaction on mobile phones. Pervasive Mob. Comput. 5 (October 2009)Google Scholar
  13. 13.
    Simunic, T., Benini, L., Glynn, P., De Micheli, G.: Dynamic power management for portable systems. In: MobiCom (2000)Google Scholar
  14. 14.
    Trestian, I., Ranjan, S., Kuzmanovic, A., Nucci, A.: Measuring serendipity: connecting people, locations and interests in a mobile 3g network. In: IMC 2009 (2009)Google Scholar
  15. 15.
    Yang, G.: Discovering Significant Places from Mobile Phones – A Mass Market Solution. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 34–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

Authors and Affiliations

  • Yifei Jiang
    • 1
  • Abhishek Jaiantilal
    • 1
  • Xin Pan
    • 1
  • Mohammad A. A. H. Al-Mutawa
    • 1
  • Shivakant Mishra
    • 1
  • Larry Shi
    • 2
  1. 1.University of Colorado at BoulderBoulderU.S.A.
  2. 2.University of HoustonU.S.A.

Personalised recommendations