Advertisement

Atlas-Based Whole-Body PET-CT Segmentation Using a Passive Contour Distance

  • Fabian Gigengack
  • Lars Ruthotto
  • Xiaoyi Jiang
  • Jan Modersitzki
  • Martin Burger
  • Sven Hermann
  • Klaus P. Schäfers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7766)

Abstract

In positron emission tomography (PET) imaging, the segmentation of organs is necessary for many quantitative image analysis tasks, e.g., estimation of individual organ concentration or partial volume correction. To this end we present a fully automated approach for wholebody segmentation which enables large-scale and reproducible studies. The approach is based on joint segmentation and atlas registration. The classical active contour approach by Chan and Vese is modified to a novel passive contour energy term with implicitly incorporated information about shape and location of the organs. This new energy is added to a registration functional which is based on both functional (PET) and morphological (CT) data. The proposed method is applied to medical data, given by 13 PET-CT data sets of mice, and quantitatively compared to manually drawn VOIs. An average Dice coefficient of 0.73 ± 0.10 for the left ventricle, 0.88 ± 0.05 for the bladder, and 0.76 ± 0.07 for the kidneys shows the high accuracy of our method.

Keywords

Segmentation Active Contour Passive Contour Registration Atlas PET-CT Whole-Body 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baiker, M., Staring, M., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 516–523. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans Image Process 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T., Vese, L.: Active contour and segmentation models using geometric PDE’s for medical imaging. In: Malladi, R. (ed.) Geometric Methods in Bio-Medical Image Processing: Mathematics and Visualization, pp. 63–75. Springer (2002)Google Scholar
  4. 4.
    Dogdas, B., Stout, D., Chatziioannou, A., Leahy, R.: Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Physics Med. Biol. 52(3), 577 (2007)CrossRefGoogle Scholar
  5. 5.
    Gigengack, F., Ruthotto, L., Burger, M., Wolters, C., Jiang, X., Schäfers, K.: Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans. Med. Imag. 31(3), 698–712 (2012)CrossRefGoogle Scholar
  6. 6.
    Hugenberg, V., Breyholz, H.J., Riemann, B., Hermann, S., Schober, O., Schäfers, M., Gangadharmath, U., Mocharla, V., Kolb, H., Walsh, J., Zhang, W., Kopka, K., Wagner, S.: A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates (radio)synthesis, in vitro and first in vivo evaluation. J. Med. Chem. 55(10), 4714–4727 (2012)CrossRefGoogle Scholar
  7. 7.
    Kösters, T., Schäfers, K., Wübbeling, F.: EMrecon: An expectation maximization based image reconstruction framework for emission tomography data. In: NSS/MIC Conference Record. IEEE (2011)Google Scholar
  8. 8.
    Erdt, M., Steger, S., Sakas, G.: Regmentation: A new view of image segmentation and registration. Journal of Radiation Oncology Informatics, 1–23 (2012)Google Scholar
  9. 9.
    Massoud, T., Gambhir, S.: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003)CrossRefGoogle Scholar
  10. 10.
    Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. CAM Report 11-81, UCLA (December 2011)Google Scholar
  12. 12.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50, 271–293 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wang, H., Olafsen, T., Stout, D., Chatziioannou, A.: Quantification of organ uptake from small animal PET images via registration with a statistical mouse atlas. In: MICCAI Workshop Proceedings (2011)Google Scholar
  14. 14.
    Yezzi, A., Zöllei, L., Kapur, T.: A variational framework for integrating segmentation and registration through active contours. Med. Image Anal. 7(2), 171–185 (2003)CrossRefGoogle Scholar
  15. 15.
    Zaidi, H., Ruest, T., Schoenahl, F., Montandon, M.: Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage 32(4), 1591–1607 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabian Gigengack
    • 1
    • 2
  • Lars Ruthotto
    • 3
  • Xiaoyi Jiang
    • 2
  • Jan Modersitzki
    • 3
  • Martin Burger
    • 4
  • Sven Hermann
    • 1
  • Klaus P. Schäfers
    • 1
  1. 1.European Institute for Molecular Imaging (EIMI)University of MünsterGermany
  2. 2.Department of Mathematics and Computer ScienceUniversity of MünsterGermany
  3. 3.Institute of Mathematics and Image ComputingUniversity of LübeckGermany
  4. 4.Institute for Computational and Applied MathematicsUniversity of MünsterGermany

Personalised recommendations