Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas

  • Tobias Gass
  • Gábor Székely
  • Orcun Goksel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7766)


A semi-supervised segmentation method using a single atlas is presented in this paper. Traditional atlas-based segmentation suffers from either a strong bias towards the selected atlas or the need for manual effort to create multiple atlas images. Similar to semi-supervised learning in computer vision, we study a method which exploits information contained in a set of unlabelled images by mutually registering them non-rigidly and propagating the single atlas segmentation over multiple such registration paths to each target. These multiple segmentation hypotheses are then fused by local weighting based on registration similarity. Our results on two datasets of different anatomies and image modalities, corpus callosum MR and mandible CT images, show a significant improvement in segmentation accuracy compared to traditional single atlas based segmentation. We also show that the bias towards the selected atlas is minimized using our method. Additionally, we devise a method for the selection of intermediate targets used for propagation, in order to reduce the number of necessary inter-target registrations without loss of final segmentation accuracy.


Target Image Label Propagation Segmentation Accuracy Normalize Cross Correlation Support Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kass, M., Witkin, A.: Snakes: Active contour models. International Journal of Computer Vision 331, 321–331 (1988)CrossRefGoogle Scholar
  2. 2.
    Furnstahl, P., Fuchs, T., Schweizer, A., Nagy, L., Székely, G., Harders, M.: Automatic and robust forearm segmentation using graph cuts. In: ISBI, pp. 77–80 (2008)Google Scholar
  3. 3.
    Boykov, Y., Funke-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  4. 4.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)CrossRefGoogle Scholar
  5. 5.
    Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic Registration Using B-Splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Fischer, B., Modersitzki, J.: Ill-posed medicine - an introduction to image registration. Inverse Problems 24(3), 1–19 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D., Maurer, C.: Quo vadis, atlas-based segmentation? In: Handbook of Biomedical Image Analysis, pp. 435–486 (2005)Google Scholar
  8. 8.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis 13(4), 543–563 (2009)CrossRefGoogle Scholar
  9. 9.
    Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE T. Med. Imaging 28(7), 1000–1010 (2009)CrossRefGoogle Scholar
  10. 10.
    van Rikxoort, E.M., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M.A., Pluim, J.P.W., van Ginneken, B.: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Medical Image Analysis 14(1), 39–49 (2010)CrossRefGoogle Scholar
  11. 11.
    Jia, H., Wu, G., Wang, Q., Shen, D.: NeuroImage ABSORB: Atlas building by self-organized registration and bundling. NeuroImage 51(3), 1057–1070 (2010)CrossRefGoogle Scholar
  12. 12.
    Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 77–84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  14. 14.
    Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised learning, vol. 2. MIT Press, Cambridge (2006)Google Scholar
  15. 15.
    Wang, F., Wang, J., Zhang, C., Shen, H.C., Bay, C.W., Kong, H.: Semi-Supervised Classification Using Linear Neighborhood Propagation. Sci. & Tech. (2006)Google Scholar
  16. 16.
    Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: IEEE CVPR, pp. 902–909 (June 2010)Google Scholar
  17. 17.
    Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical report, School Comput. Sci. Carnegie Mellon Univ. (2002)Google Scholar
  18. 18.
    Riklin-Raviv, T., Van Leemput, K., Menze, B.H., Wells, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Medical Image Analysis 14(5), 654–665 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tobias Gass
    • 1
  • Gábor Székely
    • 1
  • Orcun Goksel
    • 1
  1. 1.Computer Vision Lab, Dep. of Electrical EngineeringETH ZurichSwitzerland

Personalised recommendations