Advertisement

Brain Tumor Cell Density Estimation from Multi-modal MR Images Based on a Synthetic Tumor Growth Model

  • Ezequiel Geremia
  • Bjoern H. Menze
  • Marcel Prastawa
  • M. -A. Weber
  • Antonio Criminisi
  • Nicholas Ayache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7766)

Abstract

This paper proposes to employ a detailed tumor growth model to synthesize labelled images which can then be used to train an efficient data-driven machine learning tumor predictor. Our MR image synthesis step generates images with both healthy tissues as well as various tumoral tissue types. Subsequently, a discriminative algorithm based on random regression forests is trained on the simulated ground truth to predict the continuous latent tumor cell density, and the discrete tissue class associated with each voxel. The presented method makes use of a large synthetic dataset of 740 simulated cases for training and evaluation. A quantitative evaluation on 14 real clinical cases diagnosed with low-grade gliomas demonstrates tissue class accuracy comparable with state of the art, with added benefit in terms of computational efficiency and the ability to estimate tumor cell density as a latent variable underlying the multimodal image observations. The idea of synthesizing training data to train data-driven learning algorithms can be extended to other applications where expert annotation is lacking or expensive.

Keywords

Ground Truth Random Forest Information Gain Necrotic Core Tissue Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, E.D., Delon, J., Bah, A.B., Capelle, L., Mandonnet, E.: Differential MRI analysis for quantification of low grade glioma growth. Medical Image Analysis 16, 114–126 (2012)CrossRefGoogle Scholar
  2. 2.
    Cristini, V., Lowengrub, J.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, pp. 185–205. Cambridge University Press (2010)Google Scholar
  3. 3.
    Deisboeck, T.S., Stamatakos, G.S.: Multiscale Cancer Modeling, pp. 359–406. CRC Press (2010)Google Scholar
  4. 4.
    Angelini, E.D., Clatz, O., Mandonnet, E., Konukoglu, E., Capelle, L., Duffau, H.: Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications. Cur. Med. Imag. Rev. 3, 262–276 (2007)CrossRefGoogle Scholar
  5. 5.
    Menze, B.H., Van Leemput, K., Honkela, A., Konukoglu, E., Weber, M.-A., Ayache, N., Golland, P.: A Generative Approach for Image-Based Modeling of Tumor Growth. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 735–747. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Medical Image Analysis 8, 275–283 (2004)CrossRefGoogle Scholar
  7. 7.
    Zou, K.H., Wells III, W.M., Kaus, M.R., Kikinis, R., Jolesz, F.A., Warfield, S.K.: Statistical Validation of Automated Probabilistic Segmentation against Composite Latent Expert Ground Truth in MR Imaging of Brain Tumors. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 315–322. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A Generative Model for Brain Tumor Segmentation in Multi-Modal Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Riklin-Raviv, T., Leemput, K.V., Menze, B.H., Wells, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Medical Image Analysis 14, 654–665 (2010)CrossRefGoogle Scholar
  10. 10.
    Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A.C.F., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Med. Imaging 20(8), 677–688 (2001)CrossRefGoogle Scholar
  11. 11.
    Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comp. Meth. Prog. Biomed. 104, 158–164 (2011)CrossRefGoogle Scholar
  12. 12.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Zacharaki, E.I., Hogea, C.S., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. NeuroImage 46, 762–774 (2009)CrossRefGoogle Scholar
  14. 14.
    Lee, C.-H., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R.: Segmenting Brain Tumors Using Pseudo–Conditional Random Fields. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 359–366. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A Discriminative Model-Constrained Graph Cuts Approach to Fully Automated Pediatric Brain Tumor Segmentation in 3-D MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 67–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.L.: Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Transactions on Medical Imaging 27, 629–640 (2008)CrossRefGoogle Scholar
  17. 17.
    Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for Efficient Anatomy Detection and Localization in CT Studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D.: Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 159–166. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Geremia, E., Clatz, O., Menze, B.H., Konukoglu, E., Criminisi, A., Ayache, N.: Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage 57, 378–390 (2011)CrossRefGoogle Scholar
  21. 21.
    Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Medical Image Analysis 13, 297–311 (2009)CrossRefGoogle Scholar
  22. 22.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Technical report, Microsoft (2011)Google Scholar
  23. 23.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proc CVPR, pp. 1297–1304 (2011)Google Scholar
  24. 24.
    Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with mass effect. IEEE Transactions on Medical Imaging 24, 1334–1346 (2005)CrossRefGoogle Scholar
  25. 25.
    Coltuc, D., Bolon, P., Chassery, J.M.: Exact histogram specification. IEEE TIP 15, 1143–1152 (2006)Google Scholar
  26. 26.
    Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3d brain images. IEEE Transactions on Medical Imaging 21, 122–138 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ezequiel Geremia
    • 1
  • Bjoern H. Menze
    • 1
    • 2
    • 3
  • Marcel Prastawa
    • 4
  • M. -A. Weber
    • 5
  • Antonio Criminisi
    • 6
  • Nicholas Ayache
    • 1
  1. 1.Asclepios Research ProjectINRIA Sophia-AntipolisFrance
  2. 2.Computer Science and Artificial Intelligence LaboratoryMITUSA
  3. 3.Computer Vision LaboratoryETH ZurichSwitzerland
  4. 4.Scientific Computing and Imaging InstituteUniversity of UtahUSA
  5. 5.Diagnostic and Interventional RadiologyHeidelberg University HospitalGermany
  6. 6.Machine Learning and Perception GroupMicrosoft Research CambridgeUK

Personalised recommendations