Advertisement

What Genes Tell about Iris Appearance

  • Stine Harder
  • Susanne R. Christoffersen
  • Peter Johansen
  • Claus Børsting
  • Niels Morling
  • Jeppe D. Andersen
  • Anders L. Dahl
  • Rasmus R. Paulsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7766)

Abstract

Predicting phenotypes based on genotypes is generally hard, but has shown good results for prediction of iris color. We propose to correlate the appearance of iris with DNA. Six single-nucleotide polymorphisms (SNPs) have previously been shown to correlate with human iris color, and we demonstrate that especially one of the six SNPs are correlated with iris appearance. To perform this analysis we need a method to model the iris appearance, and we suggest an iris characterization based on a bag of visual words, which gives us a similarity measure between images of eyes. We have a dataset of 215 eye images with corresponding SNP types, where the image of the iris has been segmented. We perform two experiments based on the iris characterization. An agglomerative clustering is performed and the result is that one SNP – rs12913832 (HERC2) is highly correlated with the image clustering. Furthermore subspace projections are performed supporting that this SNP is very important for eye color expression. With the suggested image characterizations we are able to investigate the correlation between the phenotypic iris appearance and specific SNPs. This has potential for further investigation of the relation between DNA and iris appearance, especially with focus on iris texture.

Keywords

Iris color Iris texture Image analysis Image clustering Canonical discriminant analysis DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brand, A., Brand, H., et al.: The impact of genetics and genomics on public health. European Journal of Human Genetics 16(1), 5–13 (2007)CrossRefGoogle Scholar
  3. 3.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  4. 4.
    Daugman, J.G.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  5. 5.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Human Genetics 7(2), 179–188 (1936)CrossRefGoogle Scholar
  6. 6.
    Janssens, A.C.J.W., Van Duijn, C.M.: Genome-based prediction of common diseases: advances and prospects. Human molecular genetics 17(R2), R166–R173 (2008)Google Scholar
  7. 7.
    Kayser, M., Schneider, P.M.: Dna-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. Forensic Science International: Genetics 3(3), 154–161 (2009)CrossRefGoogle Scholar
  8. 8.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  9. 9.
    Krishnamachari, S., Abdel-Mottaleb, M.: Image browsing using hierarchical clustering. In: Proceedings of IEEE International Symposium on Computers and Communications, pp. 301–307. IEEE (1999)Google Scholar
  10. 10.
    Li, S.Z.: Markov random field modeling in image analysis. Springer-Verlag New York Inc. (2009)Google Scholar
  11. 11.
    Liu, F., van Duijn, K., Vingerling, J.R., Hofman, A., Uitterlinden, A.G., Janssens, A., Kayser, M.: Eye color and the prediction of complex phenotypes from genotypes. Current Biology 19(5), R192–R193 (2009)Google Scholar
  12. 12.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 1470–1477. IEEE (2003)Google Scholar
  14. 14.
    Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 815–830 (2010)CrossRefGoogle Scholar
  15. 15.
    Walsh, S., Lindenbergh, A., Zuniga, S.B., Sijen, T., de Knijff, P., Kayser, M., Ballantyne, K.N.: Developmental validation of the irisplex system: determination of blue and brown iris colour for forensic intelligence. Forensic Science International: Genetics 5(5), 464–471 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stine Harder
    • 1
  • Susanne R. Christoffersen
    • 1
  • Peter Johansen
    • 2
  • Claus Børsting
    • 2
  • Niels Morling
    • 2
  • Jeppe D. Andersen
    • 2
  • Anders L. Dahl
    • 1
  • Rasmus R. Paulsen
    • 1
  1. 1.DTU Informatics - Informatics and Mathematical ModellingTechnical University of DenmarkLyngbyDenmark
  2. 2.Section of Forensic Genetics - Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ODenmark

Personalised recommendations