Advertisement

Automatic Extraction of the Curved Midsagittal Brain Surface on MR Images

  • Hugo J. Kuijf
  • Max A. Viergever
  • Koen L. Vincken
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7766)

Abstract

Many methods exist for the automatic extraction of the midsagittal plane from neuroimages, assuming bilateral symmetry. However, this assumption is incorrect owing to brain torque and the possible presence of pathology. In this paper, a method for extracting the curved midsagittal surface from brain images is presented.

First, the method localizes the interhemispheric fissure with an existing technique for midsagittal plane extraction. Next, the plane is modelled as a bicubic spline and the configuration of the control points is optimized to obtain the midsagittal surface.

The midsagittal surface results in a better segmentation of the cerebral hemispheres. Not only is the result visually more appealing, the absolute volume of misclassified tissue decreases significantly.

Keywords

Control Point Bilateral Symmetry Automatic Extraction Sagittal Slice Functional Brain Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crow, T.: Schizophrenia as an anomaly of cerebral asymmetriy. In: Imaging of the Brain in Psychiatry and Related Fields, pp. 1–17 (1993)Google Scholar
  2. 2.
    Simons, P., Algra, A., van de Laak, M., Grobbee, D., van der Graaf, Y.: Second manifestations of arterial disease (smart) study: Rationale and design. European Journal of Epidemiology 15, 773–781 (1999)CrossRefGoogle Scholar
  3. 3.
    Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., Kuhl, D.E.: Correlation methods for the centering, rotation, and alignment of functional brain images. Journal of Nuclear Medicine 31(7), 1220–1226 (1990)Google Scholar
  4. 4.
    Minoshima, S., Berger, K.L., Lee, K.S., Mintun, M.A.: An automated method for rotational correction and centering of three-dimensional functional brain images. Journal of Nuclear Medicine 33(8), 1579–1585 (1992)Google Scholar
  5. 5.
    Ardekani, B.A., Kershaw, J., Braun, M., Kanno, I.: Automatic detection of the mid-sagittal plane in 3-d brain images. IEEE Transactions on Medical Imaging 16(6), 947–952 (1997)CrossRefGoogle Scholar
  6. 6.
    Smith, S., Jenkinson, M.: Accurate Robust Symmetry Estimation. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 308–317. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Collins, R., Rothfus, W.E.: Robust midsagittal plane extraction from normal and pathological 3d neuroradiology images. IEEE Transactions on Medical Imaging 20(1), 175–192 (2001)Google Scholar
  8. 8.
    Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3-d brain images. IEEE Transactions on Medical Imaging 21(2), 122–138 (2002)CrossRefGoogle Scholar
  9. 9.
    Hu, Q., Nowinski, W.L.: A rapid algorithm for robust and automatic extraction of the midsagittal plane of the human cerebrum from neuroimages based on local symmetry and outlier removal. NeuroImage 20(4), 2153–2165 (2003)CrossRefGoogle Scholar
  10. 10.
    Tuzikov, A.V., Colliot, O., Bloch, I.: Evaluation of the symmetry plane in 3d mr brain images. Pattern Recognition Letters 24(14), 2219–2233 (2003)CrossRefGoogle Scholar
  11. 11.
    Brummer, M.E.: Hough transform detection of the longitudinal fissure in tomographic head images. IEEE Transactions on Medical Imaging 10(1), 74–81 (1991)CrossRefGoogle Scholar
  12. 12.
    Volkau, I., Prakash, K.B., Ananthasubramaniam, A., Aziz, A., Nowinski, W.L.: Extraction of the midsagittal plane from morphological neuroimages using the kullback-leibler’s measure. Medical Image Analysis 10(6), 863–874 (2006)CrossRefGoogle Scholar
  13. 13.
    Nowinski, W.L., Prakash, B., Volkau, I., Ananthasubramaniam, A., Beauchamp Jr, N.J.: Rapid and automatic calculation of the midsagittal plane in magnetic resonance diffusion and perfusion images. Academic Radiology 13(5), 652–663 (2006)CrossRefGoogle Scholar
  14. 14.
    Bochkanov, S., Bystritsky, V.: Alglib, www.alglib.net
  15. 15.
    King, D.E.: Dlib c++ library, www.dlib.net
  16. 16.
    Liang, L., Rehm, K., Woods, R.P., Rottenberg, D.A.: Automatic segmentation of left and right cerebral hemispheres from mri brain volumes using the graph cuts algorithm. NeuroImage 34(3), 1160–1170 (2007)CrossRefGoogle Scholar
  17. 17.
    Anbeek, P., Vincken, K.L., van Bochove, G.S., van Osch, M.J., van der Grond, J.: Probabilistic segmentation of brain tissue in mr imaging. NeuroImage 27(4), 795–804 (2005)CrossRefGoogle Scholar
  18. 18.
    Fonov, V., Evans, A., McKinstry, R., Almli, C., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47(suppl.1) (2009); S102 Organization for Human Brain Mapping 2009 Annual Meeting. Google Scholar
  19. 19.
    Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011)CrossRefGoogle Scholar
  20. 20.
    Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: A toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  21. 21.
    van der Lijn, F., de Bruijne, M., Hoogendam, Y., Klein, S., Hameeteman, R., Breteler, M., Niessen, W.: Cerebellum segmentation in mri using atlas registration and local multi-scale image descriptors. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 221–224 (2009)Google Scholar
  22. 22.
    Puspitasari, F., Volkau, I., Ambrosius, W., Nowinski, W.: Robust calculation of the midsagittal plane in ct scans using the kullbackleibler measure. International Journal of Computer Assisted Radiology and Surgery 4, 535–547 (2009)CrossRefGoogle Scholar
  23. 23.
    Liao, C.C., Xiao, F., Wong, J.M., Chiang, I.J.: Automatic recognition of midline shift on brain ct images. Computers in Biology and Medicine 40(3), 331–339 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hugo J. Kuijf
    • 1
  • Max A. Viergever
    • 1
  • Koen L. Vincken
    • 1
  1. 1.Image Sciences InstituteUniversity Medical Center UtrechtThe Netherlands

Personalised recommendations