Encrypted Messages from the Heights of Cryptomania

  • Craig Gentry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

How flexible can encryption be? This question motivated the invention of public key encryption that began modern cryptography. A lot has happened since then. I will focus on two lines of research that I find especially interesting (mainly the second) and the mysterious gap between them.

References

  1. [AGVW12]
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: New perspectives and lower bounds. IACR Cryptology ePrint Archive, 2012:468 (2012)Google Scholar
  2. [BGI+01]
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [BSW11]
    Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. [BV11a]
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS 2011. IEEE Computer Society (2011)Google Scholar
  5. [BV11b]
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. [DGHV10]
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010), Full version available online from http://eprint.iacr.org/2009/616CrossRefGoogle Scholar
  7. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)Google Scholar
  8. [GGH12a]
    Garg, S., Gentry, C., Halevi, S.: Attribute based encryption for general circuits (2012) (manuscript)Google Scholar
  9. [GGH12b]
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices and applications. Cryptology ePrint Archive, Report 2012/610 (2012), http://eprint.iacr.org/
  10. [GGSW12]
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications (2012) (manuscript)Google Scholar
  11. [GH11]
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. [RAD78]
    Rivest, R., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–180 (1978)Google Scholar
  13. [SW12]
    Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. Cryptology ePrint Archive, Report 2012/592 (2012), http://eprint.iacr.org/
  14. [vDJ10]
    van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-preserving cloud computing. IACR Cryptology ePrint Archive, 2010:305 (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Craig Gentry
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations