Advertisement

Hardness Preserving Reductions via Cuckoo Hashing

  • Itay Berman
  • Iftach Haitner
  • Ilan Komargodski
  • Moni Naor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)

Abstract

A common method for increasing the usability and uplifting the security of pseudorandom function families (PRFs) is to “hash” the inputs into a smaller domain before applying the PRF. This approach, known as “Levin’s trick”, is used to achieve “PRF domain extension” (using a short,e.g,fixed, input length PRF to get a variable-length PRF), and more recently to transform non-adaptive PRFs to adaptive ones. Such reductions, however, are vulnerable to a “birthday attack”: after \(\sqrt{|\mathcal{U}}\) queries to the resulting PRF, where \(\mathcal{U}\) being the hash function range, a collision (i.e., two distinct inputs have the same hash value) happens with high probability. As a consequence, the resulting PRF is insecure against an attacker making this number of queries.

In this work we show how to go beyond the birthday attack barrier, by replacing the above simple hashing approach with a variant of cuckoo hashing — a hashing paradigm typically used for resolving hash collisions in a table, by using two hash functions and two tables, and cleverly assigning each element into one of the two tables. We use this approach to obtain: (i) A domain extension method that requires just two calls to the original PRF, can withstand as many queries as the original domain size and has a distinguishing probability that is exponentially small in the non cryptographic work. (ii) A security-preserving reduction from non-adaptive to adaptive PRFs.

Keywords

Hash Function Random Function Function Family Pseudorandom Generator Domain Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aiello, W., Venkatesan, R.: Foiling Birthday Attacks in Length-Doubling Transformations - Benes: a non-reversible alternative to Feistel. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case operations with a succinct representation. In: Proceedings of the 51th Annual Symposium on Foundations of Computer Science (FOCS), pp. 787–796 (2010)Google Scholar
  3. 3.
    Aumüller, M., Dietzfelbinger, M., Woelfel, P.: Explicit and Efficient Hash Families Suffice for Cuckoo Hashing with a Stash. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 108–120. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Goldwasser, S.: New Paradigms for Digital Signatures and Message Authentication Based on Non-interactive Zero Knowledge Proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Bellare, M., Goldreich, O., Krawczyk, H.: Stateless Evaluation of Pseudorandom Functions: Security beyond the Birthday Barrier. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 270–287. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Berman, I., Haitner, I.: From Non-adaptive to Adaptive Pseudorandom Functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of memories. Algorithmica 12(2/3), 225–244 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carter, L.J., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences, 143–154 (1979)Google Scholar
  9. 9.
    Chandran, N., Garg, S.: Hardness preserving constructions of pseudorandom functions, revisited. IACR Cryptology ePrint Archive 2012:616 (2012)Google Scholar
  10. 10.
    Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on Information Theory 46(3), 893–910 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 629–638 (2003)Google Scholar
  12. 12.
    Goldreich, O.: Towards a Theory of Software Protection. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 426–439. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Goldwasser, S., Micali, S.: On the Cryptographic Applications of Random Functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  14. 14.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM, 792–807 (1986)Google Scholar
  15. 15.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing, 1364–1396 (1999)Google Scholar
  16. 16.
    Jain, A., Pietrzak, K., Tentes, A.: Hardness Preserving Constructions of Pseudorandom Functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 369–382. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Jetchev, D., Özen, O., Stam, M.: Understanding Adaptivity: Random Systems Revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 313–330. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Luby, M.: Pseudorandomness and cryptographic applications. Princeton computer science notes. Princeton University Press (1996)Google Scholar
  20. 20.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maurer, U.M.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Maurer, U.M., Pietrzak, K.: Composition of Random Systems: When Two Weak Make One Strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Myers, S.: Black-Box Composition Does Not Imply Adaptive Security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 189–206. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Nandi, M.: A Unified Method for Improving PRF Bounds for a Class of Blockcipher Based MACs. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 212–229. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of psuedo-random functions. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 170–181 (1995)Google Scholar
  26. 26.
    Ostrovsky, R.: An Efficient Software Protection Scheme. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 610–611. Springer, Heidelberg (1990)Google Scholar
  27. 27.
    Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM Journal on Computing 38(1), 85–96 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Patarin, J.: A Proof of Security in O(2n) for the Benes Scheme. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 209–220. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Patarin, J.: Security of balanced and unbalanced feistel schemes with linear non equalities. IACR Cryptology ePrint Archive, 2010:293 (2010)Google Scholar
  32. 32.
    Pietrzak, K.: Composition Does Not Imply Adaptive Security. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Pietrzak, K.: Composition Implies Adaptive Security in Minicrypt. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Siegel, A.: On universal classes of extremely random constant-time hash functions. SIAM Journal on Computing 33(3), 505–543 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Itay Berman
    • 1
  • Iftach Haitner
    • 1
  • Ilan Komargodski
    • 2
  • Moni Naor
    • 2
  1. 1.Tel Aviv UniversityIsrael
  2. 2.Weizmann Institute of ScienceIsrael

Personalised recommendations