Testing the Lipschitz Property over Product Distributions with Applications to Data Privacy

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7785)


In the past few years, the focus of research in the area of statistical data privacy has been in designing algorithms for various problems which satisfy some rigorous notions of privacy. However, not much effort has gone into designing techniques to computationally verify if a given algorithm satisfies some predefined notion of privacy. In this work, we address the following question: Can we design algorithms which tests if a given algorithm satisfies some specific rigorous notion of privacy (e.g., differential privacy)?

We design algorithms to test privacy guarantees of a given algorithm \(\mathcal{A}\) when run on a dataset x containing potentially sensitive information about the individuals. More formally, we design a computationally efficient algorithm \({\cal T}_{priv}\) that verifies whether \(\mathcal{A}\) satisfies differential privacy on typical datasets (DPTD) guarantee in time sublinear in the size of the domain of the datasets. DPTD, a similar notion to generalized differential privacy first proposed by [3], is a distributional relaxation of the popular notion of differential privacy [14].

To design algorithm \({\cal T}_{priv}\), we show a formal connection between the testing of privacy guarantee for an algorithm and the testing of the Lipschitz property of a related function. More specifically, we show that an efficient algorithm for testing of Lipschitz property can be used as a subroutine in \({\cal T}_{priv}\) that tests if an algorithm satisfies differential privacy on typical datasets.

Apart from formalizing the connection between the testing of privacy guarantee and testing of the Lipschitz property, we generalize the work of [21] to the setting of property testing under product distribution. More precisely, we design an efficient Lipschitz tester for the case where the domain points are drawn from hypercube according to some fixed but unknown product distribution instead of the uniform distribution.


Product Distribution Repair Operator Property Testing Lipschitz Property Differential Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of lipschitz and monotone functions. In: Gupta, et al.: [18], pp. 374–386Google Scholar
  2. 2.
    Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Testing lipschitz functions on hypergrid domains. In: Gupta, et al.: [18], pp. 387–398Google Scholar
  3. 3.
    Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy. Cryptology ePrint Archive, Report 2011/487 (version: 20120524:110619) (2011),
  4. 4.
    Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless Database Privacy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bhowmick, A., Dwork, C.: Natural differential privacy. Personal Communication (2012)Google Scholar
  6. 6.
    Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W., Shmatikov, V.: “you might also like: ” privacy risks of collaborative filtering. In: IEEE Symposium on Security and Privacy, pp. 231–246 (2011)Google Scholar
  7. 7.
    Chakrabarty, D., Seshadhri, C.: Optimal bounds for monotonicity and lipschitz testing over the hypercube. CoRR abs/1204.0849 (2012)Google Scholar
  8. 8.
    Dixit, K., Jha, M., Raskhodnikova, S., Thakurta, A.: Testing the lipschitz property over product distributions with applications to data privacy (2013),
  9. 9.
    Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved Testing Algorithms for Monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM-APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dwork, C.: The Differential Privacy Frontier (Extended Abstract). In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our Data, Ourselves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information in data privacy. In: KDD, pp. 265–273 (2008)Google Scholar
  16. 16.
    Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonicity. Combinatorica 20(3), 301–337 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.): APPROX 2012 and RANDOM 2012. LNCS, vol. 7408. Springer, Cambridge (2012)zbMATHGoogle Scholar
  19. 19.
    Halevy, S., Kushilevitz, E.: Distribution-free property-testing. SIAM J. Comput. 37(4), 1107–1138 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Halevy, S., Kushilevitz, E.: Distribution-free connectivity testing for sparse graphs. Algorithmica 51(1), 24–48 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with applications to data privacy. In: Ostrovsky, R. (ed.) FOCS, pp. 433–442. IEEE (2011)Google Scholar
  22. 22.
    Kasiviswanathan, S.P., Smith, A.: A note on differential privacy: Defining resistance to arbitrary side information. CoRR abs/0803.3946 (2008)Google Scholar
  23. 23.
    Korolova, A.: Privacy violations using microtargeted ads: A case study. In: ICDMW, pp. 474–482 (2010)Google Scholar
  24. 24.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: ICDE, p. 24 (2006)Google Scholar
  25. 25.
    McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: SIGMOD, pp. 19–30 (2009)Google Scholar
  26. 26.
    Mohan, P., Thakurta, A., Shi, E., Song, D., Culler, D.: Gupt: privacy preserving data analysis made easy. In: SIGMOD, pp. 349–360 (2012)Google Scholar
  27. 27.
    Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: STOC, pp. 75–84 (2007)Google Scholar
  28. 28.
    Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms 20(2), 165–183 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: ICFP, pp. 157–168 (2010)Google Scholar
  30. 30.
    Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and privacy for mapreduce. In: NSDI, pp. 297–312 (2010)Google Scholar
  31. 31.
    Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Smith, A.: Privacy-preserving statistical estimation with optimal convergence rates. In: STOC, pp. 813–822 (2011)Google Scholar
  33. 33.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  1. 1.Pennsylvania State UniversityUSA

Personalised recommendations