Cellulose Graft Copolymers: Synthesis, Properties, and Applications

  • Gülten GürdağEmail author
  • Shokat Sarmad


Grafting of vinyl monomers onto cellulose is an important tool for the modification of cellulose. Depending on the monomer grafted onto cellulose, it gains new properties. The grafting can be performed in heterogeneous or homogeneous medium. In the grafting performed in heterogeneous medium, the reaction is carried out in aqueous medium using a suitable initiator. As initiator, the radiation or chemical initiators such as ceric ammonium nitrate (CAN), various persulfates, azobisisobutyronitrile (AIBN), and Fenton reagent (Fe(II)–H2O2) are mostly used. In case of CAN initiator, the grafting should be performed in acidic medium in order to prevent its hydrolysis. In the homogeneous grafting reactions, either a water-soluble cellulose derivative is used in the grafting or cellulose is dissolved in a suitable solvent, and then the grafting is performed. Higher number of grafts per cellulose chain is obtained in homogeneous grafting than those in heterogeneous medium.


Cellulose Grafting Homogeneous medium Heterogeneous medium Grafting percentage Grafting efficiency Number of grafts per cellulose chain Ceric ammonium nitrate Fenton reagent Persulfates 


  1. 1.
    Bikales NM, Segal L (1971) Cellulose and cellulose derivatives. Wiley Interscience, New York, NYGoogle Scholar
  2. 2.
    Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fiber volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71:458–467CrossRefGoogle Scholar
  3. 3.
    Gurgel LVA, Junior OK, Gil RPDF, Gil LF (2008) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Biores Technol 99:3077–3083CrossRefGoogle Scholar
  4. 4.
    Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79:848–862CrossRefGoogle Scholar
  5. 5.
    Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: A new method to determine degree of crystallinity and predict hydrolysis rates. Biores Technol 101:4461–4471CrossRefGoogle Scholar
  6. 6.
    Inagaki T, Siesler HW, Mitsui K, Tsuchikawa S (2010) Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study. Biomacromolecules 11:2300–2305CrossRefGoogle Scholar
  7. 7.
    Bianchi E, Bonazza A, Marsano E, Russo S (2000) Free radical grafting onto cellulose in homogeneous conditions. 2. Modified cellulose–methyl methacrylate system. Carbohydr Polym 41:47–53CrossRefGoogle Scholar
  8. 8.
    Takács E, Wojnárovits L, Földvary C, Hargittai P, Borsa J, Sajó I (2000) Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat Phys Chem 57:399–403CrossRefGoogle Scholar
  9. 9.
    Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794CrossRefGoogle Scholar
  10. 10.
    Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. J Appl Phys 19:491–506CrossRefGoogle Scholar
  11. 11.
    El Seoud OA, Fidale LC, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15:371–392CrossRefGoogle Scholar
  12. 12.
    Dworjanyn PA, Fields B, Garnett JL (1989) Effects of various additives on accelerated grafting and curing reactions initiated by UV and ionizing-radiation. ACS Symp Ser 381:112–131CrossRefGoogle Scholar
  13. 13.
    Khan F (2004) Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber. Biomacromolecules 5:1078–1088CrossRefGoogle Scholar
  14. 14.
    Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 29:767–814CrossRefGoogle Scholar
  15. 15.
    Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  16. 16.
    Stannett VT, Doane VM, Fanta G (1984) Absorbency. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Richards GN, White EF (1964) Graft polymerization on cellulosic materials. Part I. Cation-exchange membranes from paper and acrylic acid. J Polym Sci 4:1251–1260Google Scholar
  18. 18.
    Jayme G, Hebbel GW (1971) Comparison of the influence of graft polymerization and polymer impregnation on the properties of pulps and papers. Das Papier 25:113–119Google Scholar
  19. 19.
    Waly A, Abdel-Mohdy FA, Aly AS, Hebeish A (1998) Synthesis and characterization of cellulose ion exchanger. II. Pilot scale and utilization in dye–heavy metal removal. J Appl Polym Sci 68:2151–2157CrossRefGoogle Scholar
  20. 20.
    Beker ÜG, Güner FS, Dizman M, Erciyes T (1999) Heavy metal removal by ion exchanger based on hydroxyethyl cellulose. J Appl Polym Sci 74:3501–3506CrossRefGoogle Scholar
  21. 21.
    Biçak N, Sherrington DC, Senkal BF (1999) Graft copolymer of acrylamide onto cellulose as mercury selective sorbent. React Funct Polym 41:69–76CrossRefGoogle Scholar
  22. 22.
    Okieimen EF (1987) Studies on the graft copolymerization of cellulosic materials. Eur Polym J 23:319–322CrossRefGoogle Scholar
  23. 23.
    Chauhan GS, Mahajan S, Guleria KL (2000) Polymers from renewable resources: sorption of Cu2+ ions by cellulose graft copolymers. Desalination 130:85–88CrossRefGoogle Scholar
  24. 24.
    Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, New York, NYCrossRefGoogle Scholar
  25. 25.
    Samal BB, Sahu S, Chinara BB, Nanda S, Otta PK, Mohapatro LM, Mohanty TR, Ray AR, Singh KC (1988) Grafting of vinyl monomers onto sisal fiber in aqueous solution. J Polym Sci Part A Polym Chem 26:3159–3166CrossRefGoogle Scholar
  26. 26.
    Misra M, Mohanty AK, Singh BC (1987) A study on grafting of methyl methacrylate onto jute fiber (S2 \( {\rm O}_8^{2- } \)-thiourea redox system). J Appl Polym Sci 33:2809–2819CrossRefGoogle Scholar
  27. 27.
    Huque MM, Habibuddowla MD, Mahmood AJ, Mian AJ (1980) Graft-copolymerization onto jute fiber–ceric ion-initiated graft-copolymerization of methyl-methacrylate. J Polym Sci Polym Chem Ed 18:1447–1458CrossRefGoogle Scholar
  28. 28.
    Das HK, Nayak NC, Singh BC (1991) Effect of toluene on the kinetics of ce(iv)-ion-initiated grafting of methyl-methacrylate onto chemically modified jute fibers. J Macromol Sci Chem A28:297–309Google Scholar
  29. 29.
    Xie J, Hsieh YL (2003) Thermosensitive poly(n-isopropylacrylamide) hydrogels bonded on cellulose supports. J Appl Polym Sci 89:999–1006CrossRefGoogle Scholar
  30. 30.
    Ifuku S, Kadla J (2008) Preparation of a thermosensitive highly regioselective cellulose/n-isopropylacrylamide copolymer through atom transfer radical polymerization. Biomacromolecules 9:3308–3313CrossRefGoogle Scholar
  31. 31.
    Wang D, Tan J, Kang H, Ma L, Jin X, Liu R, Huang Y (2011) Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym 84:195–202CrossRefGoogle Scholar
  32. 32.
    Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882CrossRefGoogle Scholar
  33. 33.
    Mcdowall DJ, Gupta BS, Stannett VT (1984) Grafting of vinyl monomers to cellulose by ceric ion inhibition. Prog Polym Sci 10:1–50CrossRefGoogle Scholar
  34. 34.
    Saikia CN, Ali F (1999) Graft copolymerization of methyl methacrylate onto high a-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea. Bioresour Technol 68:165–171CrossRefGoogle Scholar
  35. 35.
    Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372CrossRefGoogle Scholar
  36. 36.
    Zhang LM, Chen LQ (2002) Water-soluble grafted polysaccharides containing sulfobetaine groups: Synthesis and characterization of graft copolymers of hydroxyethyl cellulose with 3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate. J Appl Polym Sci 83:2755–2761CrossRefGoogle Scholar
  37. 37.
    Tsubokawa N, Iida T, Takayama T (2000) Modification of cellulose powder surface by grafting of polymers with controlled molecular weight and narrow molecular weight distribution. J Appl Polym Sci 75:515–522CrossRefGoogle Scholar
  38. 38.
    Narayan R, Biermann CJ, Hunt MO, Horn DP (1989) In adhesives from renewable resources. American Chemical Society, Washington, DCGoogle Scholar
  39. 39.
    Nishioka N, Minami K, Kosai K (1983) Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide-paraformaldehyde solvent system III. Methyl acrylate. Polym J 15:591–596CrossRefGoogle Scholar
  40. 40.
    Nishioka N, Matsumoto K, Kosai K (1983) Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide-paraformaldehyde solvent system II. Characterization of graft copolymers. Polym J 15:153–158CrossRefGoogle Scholar
  41. 41.
    Nishioka N, Kosai K (1981) Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide-paraformaldehyde solvent system I. Acrylonitrile and methyl methacrylate. Polym J 13:1125–1133CrossRefGoogle Scholar
  42. 42.
    Abdel-Razik EA (1997) Aspects of thermal graft copolymerization of methyl methacrylate onto ethyl cellulose in homogeneous media. Polym Plast Technol Eng 36:891–903CrossRefGoogle Scholar
  43. 43.
    Bianchi E, Marsano E, Ricco L, Russo S (1998) Free radical grafting onto cellulose in homogeneous conditions 1. Modified cellulose–acrylonitrile system. Carbohydr Polym 36:313–318CrossRefGoogle Scholar
  44. 44.
    Gürdağ G, Yaşar M, Gürkaynak MA (1997) Graft copolymerization of acrylic acid on cellulose: reaction kinetics of copolymerization. J Appl Polym Sci 66:929–934CrossRefGoogle Scholar
  45. 45.
    Gupta KC, Sahoo S (2001) Co(III) Acetylacetonate-complex-initiated grafting of N-vinyl pyrrolidone on cellulose in aqueous media. J Appl Polym Sci 81:2286–2296CrossRefGoogle Scholar
  46. 46.
    Abdel-Razik EA (1990) Homogeneous graft copolymerization of acrylamide onto ethylcellulose. Polymer 31:1739–1744CrossRefGoogle Scholar
  47. 47.
    Diamantoglou M, Kundinger EF (1995) Cellulose and cellulose derivatives: physico-chemical aspects and industrial applications. Woodhead, CambridgeGoogle Scholar
  48. 48.
    Hebeish A, Guthrie JT (1981) Grafting by chemical activation of cellulose, and nature of substrate. Springer, New York, NYGoogle Scholar
  49. 49.
    Ibrahim MM, Flefel EM, El-Zawawy WK (2002) Cellulose membranes grafted with vinyl monomers in a homogeneous system. Polym Adv Technol 13:548–557CrossRefGoogle Scholar
  50. 50.
    Ibrahim MM, Flefel EM, El-Zawawy WK (2002) Cellulose membranes grafted with vinyl monomers in homogeneous system. J Appl Polym Sci 84:2629–2638CrossRefGoogle Scholar
  51. 51.
    Yang F, Li G, He YG, Ren FX, Wang JX (2009) Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 78:95–99CrossRefGoogle Scholar
  52. 52.
    Bardhan K, Mukhopadhyay S, Chatterjee SR (1977) Grafting of acrylamide onto methyl cellulose by persulfate ıon. J Polym Sci: Polym Chem Ed 15:141–148CrossRefGoogle Scholar
  53. 53.
    Zhe C, Xiaoyan L, Xuegang L (2011) Study on the synthesize of thermoplastic carboxymethyl cellulose with graft copolymerization. doi:10.1109/CDCIEM.2011.135Google Scholar
  54. 54.
    Bhattacharyya SN, Maldas D (1982) Radiation-Induced graft copolymerization of mixtures of styrene and acrylamide onto cellulose acetate. I. Effect of solvents. J Polym Sci: Polym Chem Ed 20:939–950CrossRefGoogle Scholar
  55. 55.
    Nishioka N, Matsumoto Y, Yumen T, Monmae K, Kosai K (1986) Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide-paraformaldehyde solvent system IV. 2-hydroxyethyl methacrylate. Polym J 18:323–330CrossRefGoogle Scholar
  56. 56.
    El-Hady BA, Ibrahim MM (2004) Graft copolymerization of acrylamide onto carboxymethylcellulose with the xanthate method. J Appl Polym Sci 93:271–278CrossRefGoogle Scholar
  57. 57.
    Wang D, Xuan Y, Huang Y, Shen J (2003) Synthesis and properties of graft copolymer of cellulose diacetate with poly(caprolactone monoacrylate). J Appl Polym Sci 89:85–90CrossRefGoogle Scholar
  58. 58.
    Lin CX, Zhan HU, Liu MH, Fu SU, Huang LH (2010) Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J Appl Polym Sci 118:399–404CrossRefGoogle Scholar
  59. 59.
    Swatloski RP, Spear SK, Holbrey JD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  60. 60.
    Chun-xiang L, Huai-yu Z, Ming-hua L, Shi-yu F, Jia-jun Z (2009) Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78:432–438CrossRefGoogle Scholar
  61. 61.
    Zhu J, Dong XT, Wang XL, Wang YZ (2010) Preparation and properties of a novel biodegradable ethyl cellulose grafting copolymer with poly(p-dioxanone) side-chains. Carbohydr Polym 80:350–359CrossRefGoogle Scholar
  62. 62.
    Carlmark A, Malmström E (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4:1740–1745CrossRefGoogle Scholar
  63. 63.
    Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901CrossRefGoogle Scholar
  64. 64.
    Ikeda I, Higuchi T, Maeda Y (2002) Synthesis of cellulosic graft copolymers by atom transfer radical polymerization. Sen’i Gakkaishi 58:308–313CrossRefGoogle Scholar
  65. 65.
    Zhou Q, Greffe L, Baumann MJ, Malmström E, Teeri TT, Brumer H (2005) Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549CrossRefGoogle Scholar
  66. 66.
    Coskun M, Temuz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54:342–347CrossRefGoogle Scholar
  67. 67.
    Kang H, Liu W, Liu R, Huang Y (2008) A novel, amphiphilic ethyl cellulose grafting copolymer with poly(2-hydroxyethyl methacrylate) side chains and its micellization. Macromol Chem Phys 209:424–430CrossRefGoogle Scholar
  68. 68.
    Daly WH, Evenson TS, Iacono TS, Jones RW (2001) Recent developments in cellulose grafting chemistry utilizing barton ester intermediates and nitroxide mediation. Macromol Symp 174:155–163CrossRefGoogle Scholar
  69. 69.
    Quinn JF, Chaplin RP, Davis TP (2002) Facile synthesis of comb, star, and graft polymers via reversible addition–fragmentation chain transfer (RAFT) polymerization. J Polym Sci Part A: Polym Chem 40:2956–2966CrossRefGoogle Scholar
  70. 70.
    Barner L (2003) Surface grafting via the reversible addition–fragmentation chain-transfer (RAFT) process: from polypropylene beads to core–shell microspheres. Aust J Chem 56:1091–1091CrossRefGoogle Scholar
  71. 71.
    Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717CrossRefGoogle Scholar
  72. 72.
    Takolpuckdee P (2005) Chain transfer agents for RAFT polymerization: molecules to design functionalized polymers. Aust J Chem 58:66–66CrossRefGoogle Scholar
  73. 73.
    Matyjaszewski K (1998) Radical nature of cu-catalyzed controlled radical polymerizations (atom transfer radical polymerization). Macromolecules 31:4710–4717CrossRefGoogle Scholar
  74. 74.
    Patten TE, Matyjaszewski K (1999) Copper(I)-catalyzed atom transfer radical polymerization. Acc Chem Res 32:895–903CrossRefGoogle Scholar
  75. 75.
    Xia JH, Matyjaszewski K (1999) Controlled/“living” radical polymerization. Atom transfer radical polymerization catalyzed by copper(I) and picolylamine complexes. Macromolecules 32:2434–2437CrossRefGoogle Scholar
  76. 76.
    Hiltunen MS, Raula J, Maunu SL (2011) Tailoring of water-soluble cellulose-gcopolymers in homogeneous medium using single-electron-transfer living radical polymerization. Polym Int 60:1370–1379Google Scholar
  77. 77.
    Okieimen EF, Ebhoaye JE (1986) Grafting acrylic acid monomer on cellulosic materials. J Macromol Chem A23:349–353Google Scholar
  78. 78.
    Sahoo PK, Samantaray HS, Samal RK (1986) Graft copolymerization with new class of acidic peroxo salts as initiators. I. Grafting of acrylamide onto cotton-cellulose using potassium monopersulfate, catalyzed by Co(II). J Appl Polym Sci 32:5693–5703CrossRefGoogle Scholar
  79. 79.
    Ouajai S, Hodzic A, Shanks RA (2004) Morphological and grafting modification of natural cellulose fibers. J Appl Polym Sci 94:2456–2465CrossRefGoogle Scholar
  80. 80.
    Ibrahim MD, Mondal H, Uraki Y, Ubukata M, Itoyama K (2008) Graft polymerization of vinyl monomers onto cotton fibres pretreated with amines. Cellulose 15:581–592CrossRefGoogle Scholar
  81. 81.
    Liu S, Sun G (2008) Radical graft functional modification of cellulose with allyl monomers: Chemistry and structure characterization. Carbohydr Polym 71:614–625CrossRefGoogle Scholar
  82. 82.
    Mukhopadhyay S, Prasad J, Chatterjee SR (1975) Grafting of acrylic acid onto methylcellulose. Makromol Chem 176:l–7CrossRefGoogle Scholar
  83. 83.
    Zahran AH, Williams JL, Stannett VT (1980) Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency. J Appl Polym Sci 25:535–542CrossRefGoogle Scholar
  84. 84.
    Matahwa H, Ramiah V, Jarrett WL, McLeary JB, Sanderson RD (2007) Microwave assisted graft copolymerization of n-isopropyl acrylamide and methyl acrylate on cellulose: solid state NMR analysis and CaCO3 crystallization. Macromol Symp 255:50–56CrossRefGoogle Scholar
  85. 85.
    Misra BN, Dogra R, Kaur I, Jassal JK (1979) Grafting onto cellulose. IV. Effect of complexing agents on Fenton’s reagent (Fe2+−H2O2)-initiated grafting of poly(vinyl acetate). J Polym Sci: Polym Chem Ed 17:1861–1863CrossRefGoogle Scholar
  86. 86.
    Haber F, Weiss J (1932) Über die Katalyse des Hydroperoxydes. Naturwissenschaften 20:948–950CrossRefGoogle Scholar
  87. 87.
    Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc A 147:332–351CrossRefGoogle Scholar
  88. 88.
    Merz JH, Waters WA (1949) Some oxidations involving the free hydroxyl radical. J Chem Soc S15−S25. doi:10.1039/JR9490000S15Google Scholar
  89. 89.
    Misra BN, Dogra R, Mehta IK (1980) Grafting onto cellulose. V. Effect of complexing agents on Fenton’s reagent (Fe2+−H2O2)-initiated grafting of poly(ethyl acrylate). J Polym Sci: Polym Chem Ed 18:749–752CrossRefGoogle Scholar
  90. 90.
    Huang Y, Zhao B, Zheng C, He S, Gao J (1992) Graft copolymerization of methyl methacrylate on stone ground wood using the H2O2−Fe2+ method. J Appl Polym Sci 45:71–77CrossRefGoogle Scholar
  91. 91.
    Hon DNS (1982) Graft copolymerization of lignocellulosic fibers. ACS Symposium Series, Washington, DCCrossRefGoogle Scholar
  92. 92.
    Mino G, Kaizerman S (1958) A new method for the preparation of graft copolymers. Polymerization initiated by ceric ion redox systems. J Polym Sci 31:242–243CrossRefGoogle Scholar
  93. 93.
    Bains MS (1972) Inorganic redox systems in graft polymerization onto cellulosic materials. J Polym Sci Part C: Polym Symp 37:125–151CrossRefGoogle Scholar
  94. 94.
    Gaylord N (1972) A proposed new mechanism for catalyzed and uncatalyzed graft polymerization onto cellulose. J Polym Sci 37:153–172Google Scholar
  95. 95.
    Sharma BR, Kumar V, Soni PL (2003) Graft copolymerization of acrylonitrile onto Cassia tora gum with ceric ammonium nitrate–nitric acid as a redox initiator. J Appl Polym Sci 90:129–136CrossRefGoogle Scholar
  96. 96.
    Dhiman PK, Kaur I, Mahajan RK (2008) Synthesis of a cellulose-grafted polymeric support and its application in the reductions of some carbonyl compounds. J Appl Polym Sci 108:99–111CrossRefGoogle Scholar
  97. 97.
    Fanta GF, Burr RC, Doane WM (1987) Graft polymerization of acrylonitrile onto wheat straw. J Appl Polym Sci 33:899–906CrossRefGoogle Scholar
  98. 98.
    Kim BS, Mun SP (2009) Effect of Ce4+ pretreatment on swelling properties of cellulosic superabsorbents. Polym Adv Technol 20:899–906CrossRefGoogle Scholar
  99. 99.
    Gürdağ G, Güçlü G, Özgümüş S (2001) Graft copolymerization of acrylic acid onto cellulose: effects of pretreatments and crosslinking agent. J Appl Polym Sci 80:2267–2272CrossRefGoogle Scholar
  100. 100.
    Fernandez MJ, Casinos I, Guzman GM (1990) Grafting of a vinyl acetate/methyl acrylate mixture onto cellulose. Effect of temperature and nature of substrate. Makromol Chem 191:1287–1299CrossRefGoogle Scholar
  101. 101.
    Gupta KC, Khandekar K (2006) Ceric(IV) ion-induced graft copolymerization of acrylamide and ethyl acrylate onto cellulose. Polym Int 55:139–150CrossRefGoogle Scholar
  102. 102.
    Snell FD, Ettre LC (1973) Encylopedia of industrial chemical analysis. Wiley Interscience, New York, NYGoogle Scholar
  103. 103.
    Gupta KC, Khandekar K (2002) Graft copolymerization of acrylamide–methylacrylate comonomers onto cellulose using ceric ammonium nitrate. J Appl Polym Sci 86:2631–2642CrossRefGoogle Scholar
  104. 104.
    Ogiwara Y, Ogiwara Y, Kubota H (1968) Studies of the initiation mechanism of ferric ion–hydrogen peroxide systems in graft copolymerization on cellulose. J Appl Polym Sci 12:2575–2584CrossRefGoogle Scholar
  105. 105.
    Toledano-Thompson T, Loría-Bastarrachea MI, Aguilar-Vega MJ (2005) Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly(acrylic acid). Carbohydr Polym 62:67–73CrossRefGoogle Scholar
  106. 106.
    Kubota H, Fukushima Y, Kuwabara S (1997) Factors affecting liquid-phase photografting of acrylic acid on cellulose and its derivatives. Eur Polym J 33:67–71CrossRefGoogle Scholar
  107. 107.
    Mao C, Qiu YZ, Sang HB, Mei H, Zhu AP, Shen J, Lin SC (2004) Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv Colloid Interface Sci 110:5–17CrossRefGoogle Scholar
  108. 108.
    Hatakeyama T, Nakamura K (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804CrossRefGoogle Scholar
  109. 109.
    Dahoua W, Ghemati D, Oudia A, Aliouche D (2010) Preparation and biological characterization of cellulose graft copolymers. Biochem Eng J 48:187–194CrossRefGoogle Scholar
  110. 110.
    Cavus S, Gurdag G, Yasar M, Gurkaynak MA (2003) Competitive removal of Pb2+, Cu2+, Cd2+ by cellulose graft copolymer. Polym Prep 44:714–715Google Scholar
  111. 111.
    Zhu J, Wang WT, Wang XL, Li B, Wanga YZ (2009) Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohydr Polym 76:139–144CrossRefGoogle Scholar
  112. 112.
    Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50:447–454CrossRefGoogle Scholar
  113. 113.
    Tang X, Gao L, Fan X, Zhou Q (2007) Controlled grafting of ethyl cellulose with azobenzene-containing polymethacrylates via atom transfer radical polymerization. J Polym Sci: Part A: Polym Chem 45:1653–1660CrossRefGoogle Scholar
  114. 114.
    Chauhan GS, Singh B, Dhiman SK (2004) Functionalization of poly(4-vinyl pyridine) grafted cellulose by quaternization reactions and a study on the properties of postquaternized copolymers. J Appl Polym Sci 91:2454–2464CrossRefGoogle Scholar
  115. 115.
    Williams JL, Stannet VT (1979) Highly water-absorptive cellulose by postdecrystallization. J Appl Polym Sci 23:1265–1268CrossRefGoogle Scholar
  116. 116.
    Williams JL, Stannet VT (1977) Method of increasing the water absorption of cellulose-containing materials. US Patent 4,036,588Google Scholar
  117. 117.
    Ibrahem AA, Nada AMA (1985) Grafting of acrylamide onto cotton linters. Acta Polym 36:342–343CrossRefGoogle Scholar
  118. 118.
    Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in aqueous systems. II. Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299CrossRefGoogle Scholar
  119. 119.
    Venkataraman A, Subramanian DR, Manjunath BR (1979) A comparative study of the swelling action of monoamines and diamines on cotton cellulose. Indian J Textile Res 4:106–110Google Scholar
  120. 120.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Interaction of cellulose with aliphatic mono- and diamines. In: Comprehensive cellulose chemistry–functionalization of cellulose. Wiley-VCH, WeinheimGoogle Scholar
  121. 121.
    Bhattacharya A, Das A, De A (1998) Structural influence on grafting of acrylamide based monomers on cellulose acetate. Ind J Chem Tech 5:135–138Google Scholar
  122. 122.
    Varma DS, Narashinan V (1972) Thermal behavior of graft copolymers of cotton cellulose and acrylate monomers. J Appl Polym Sci 16:3325–3339CrossRefGoogle Scholar
  123. 123.
    Varma DS, Narashinan V (1975) Grafting of formaldehyde-crosslinked and cyanoethylated cotton cellulose with acrylate monomers. J Appl Polym Sci 19:29–36CrossRefGoogle Scholar
  124. 124.
    Goyal P, Kumar V, Sharma P (2008) Graft copolymerization of acrylamide onto tamarind kernel powder in the presence of ceric ion. J Appl Polym Sci 108:3696–3701CrossRefGoogle Scholar
  125. 125.
    Mansour OY, Nagaty A (1985) Grafting of synthetic polymers to natural polymers by chemical processes. Prog Polym Sci 11:91–165CrossRefGoogle Scholar
  126. 126.
    Arthur JC, Hinojosa O, Banis MS (1968) ESR study of reactions of cellulose with OH generated by Fe+2/H2O2. J Appl Polym Sci 12:1411–1421CrossRefGoogle Scholar
  127. 127.
    Arthur JC (1970) Cellulose graft copolymers. J Macromol Sci Chem A4:1057–1065Google Scholar
  128. 128.
    Dilli S, Garnett JL (1967) Radiation induced reactions with cellulose III. Kinetics of styrene copolymerisation in methanol. J Appl Polym Sci 11:859–870CrossRefGoogle Scholar
  129. 129.
    Yasukawa T, Sasaki Y, Murukami K (1973) Kinetics of radiation induced grafting reactions II. Cellulose acetate-styrene systems. J Polym Sci Polym Chem 11:2547–2556CrossRefGoogle Scholar
  130. 130.
    Kokot S, Stewart S (1995) An exploratory-study of mercerized cotton fabrics by DRIFT spectroscopy and chemometrics. Text Res J 65:643–651CrossRefGoogle Scholar
  131. 131.
    Takács E, Wojnárovits L, Földváry CS, Hargittai P, Borsa J, Sajó I (2001) Radiation activation of cotton-cellulose prior to alkali treatment. Res Chem Intermed 27:837–845CrossRefGoogle Scholar
  132. 132.
    Othman SH, Sohsah MA, Ghoneim MM (2009) The effects of hazardous ions adsorption on the morphological and chemical properties of reactive cloth filter. Radiat Phys Chem 78:976–985CrossRefGoogle Scholar
  133. 133.
    Takács E, Mirzadeh H, Wojnárovits L, Borsa J, Mirzataheri M, Benke N (2007) Comparison of simultaneous and pre-irradiation grafting of N-vinylpyrroli-done to cotton-cellulose. Nucl Instrum Meth Phys Res B 265:217–220CrossRefGoogle Scholar
  134. 134.
    Chauhan GS, Guleria L, Sharma R (2005) Synthesis, characterization and metal sorption studies of graft copolymers of cellulose and glycidyl methacrylate and some comonomers. Cellulose 12:97–110CrossRefGoogle Scholar
  135. 135.
    Abdel-Aal SE, Gad YH, Dessouki AM (2006) The use of wood pulp and radiation-modified starch in wastewater treatment. J Appl Polym Sci 99:2460–2469CrossRefGoogle Scholar
  136. 136.
    Kondo T, Sawatari CA (1996) Fourier transform infrared spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399CrossRefGoogle Scholar
  137. 137.
    Lepoutre P, Hui SH, Robertson AA (1973) The water absorbency of hydrolyzed polyacrylonitrile-grafted cellulose fibers. J Appl Polym Sci 17:3143–3156CrossRefGoogle Scholar
  138. 138.
    Andreozzi L, Castelvetro V, Ciardelli G, Corsi L, Faetti M, Fatarella E, Zulli F (2005) Free radical generation upon plasma treatment of cotton fibers and their initiation efficiency in surface-graft polymerization. J Colloid Interf Sci 289:455–465CrossRefGoogle Scholar
  139. 139.
    Hegazy ESA, Kamal H, Khalifa NA, Mahmoud GA (2001) Separation and extraction of some heavy and toxic metal ions from their wastes by grafted membranes. J Appl Polym Sci 81:849–860CrossRefGoogle Scholar
  140. 140.
    Imrisova D, Maryska S (1968) Study of radiation-induced graft polymerization of vinyl monomers to cellulose by infrared spectroscopy. II. Cellulose–polystyrene copolymers. J Appl Polym Sci 12:2007–2011CrossRefGoogle Scholar
  141. 141.
    Badawy SM, Dessouki AM, Nizam El-Din HM (2001) Direct pyrolysis mass spectrometry of acrylonitrile–cellulose graft copolymer prepared by radiation-induced graft polymerization in presence of styrene as homopolymer suppressor. Radiat Phys Chem 61:143–148CrossRefGoogle Scholar
  142. 142.
    Jun L, Jun L, Min Y, Hongfei H (2001) Solvent effect on grafting polymerization of NIPAAm onto cotton cellulose via γ-preirradiation method. Radiat Phys Chem 60:625–628CrossRefGoogle Scholar
  143. 143.
    Nishioka N, Watase K, Arimura K, Kosai K, Uno M (1984) Permeability through cellulose membranes grafted with vinyl monomers in a homogeneous system. 1. Diffusive permeability through acrylonitrile grafted cellulose membranes. Polym J 16:867–875CrossRefGoogle Scholar
  144. 144.
    Nishioka N, Yoshimi S, Iwaguchi T, Kosai K (1984) Permeability through cellulose membranes grafted with vinyl monomers in homogeneous system. 2. States of water in acrylonitrile grafted cellulose membranes. Polym J 16:877–885CrossRefGoogle Scholar
  145. 145.
    Güçlü G, Gürdağ G, Özgümüş S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90:2034–2039CrossRefGoogle Scholar
  146. 146.
    Çavuş S, Gürdağ G, Yaşar M, Güçlü K, Gürkaynak MA (2006) The competitive heavy metal removal by hydroxyethyl cellulose-g-poly(acrylic acid) copolymer and its sodium salt: The effect of copper content on the adsorption capacity. Polym Bull 57:445–456CrossRefGoogle Scholar
  147. 147.
    Wen OH, Kuroda SI, Kubota H (2001) Temperature-responsive character of acrylic acid and N-isopropylacrylamide binary monomers-grafted celluloses. Eur Polym J 37:807–813CrossRefGoogle Scholar
  148. 148.
    O’Connell DW, Birkinshaw C, O’Dwyer TF (2006) A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions. J Chem Technol Biotechnol 81:1820–1828CrossRefGoogle Scholar
  149. 149.
    Liu S, Sun G (2008) Radical graft functional modification of cellulose with allyl monomers: chemistry and structure characterization. Carbohydr Polym 71:614–625CrossRefGoogle Scholar
  150. 150.
    Esen E, Ozbas Z, Kasgoz H, Gurdag G (2011) Thermoresponsive cellulose-g-N,N′-diethyl acrylamide copolymers. Curr Opin Biotechnol 22(1):S61–S62. doi: 10.1016/j.copbio.2011.05.173 CrossRefGoogle Scholar
  151. 151.
    Gupta KC (2009) Thermoresponsive cellulose by ATRP graft copolymerization of comonomers. Abstracts of Papers of American Chemical Society 237: 384-poly.
  152. 152.
    Csoka G, Marton S, Gelencser A, Klebovich I (2005) Thermoresponsive properties of different cellulose derivatives. Eur J Pharm Sci 25:S74–S75Google Scholar
  153. 153.
    Bokias G, Mylonas Y, Staikos G, Bumbu GG, Vasile C (2001) Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules 34:4958–4964CrossRefGoogle Scholar
  154. 154.
    Li YX, Liu RG, Liu WY, Kang HL, Wu M, Huang Y (2008) Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-p(PEGMA) amphiphilic copolymers. J Polym Sci Part A: Polym Chem 46:6907–6915CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Chemical EngineeringIstanbul UniversityAvcilarTurkey

Personalised recommendations