Using Bees Hill Flux Balance Analysis (BHFBA) for in silico Microbial Strain Optimization

  • Yee Wen Choon
  • Mohd Saberi Bin Mohamad
  • Safaai Deris
  • Rosli Md. Illias
  • Lian En Chai
  • Chuii Khim Chong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7802)

Abstract

Microbial strains can be manipulated to improve product yield and improve growth characteristics. Optimization algorithms are developed to identify the effects of gene knockout on the results. However, this process is often faced the problem of being trapped in local minima and slow convergence due to repetitive iterations of algorithm. In this paper, we proposed Bees Hill Flux Balance Analysis (BHFBA) which is a hybrid of Bees Algorithm, Hill Climbing Algorithm and Flux Balance Analysis to solve the problems and improve the performance in predicting optimal sets of gene deletion for maximizing the growth rate and production yield of desired metabolite. Escherichia coli is the model organism in this paper. The list of knockout genes, growth rate and production yield after the deletion are the results from the experiments. BHFBA performed better in term of computational time, stability and production yield.

Keywords

Bees Algorithm Hill Climbing Flux Balance Analysis Microbial Strains Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L., Palsson, B.Ø.: Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 72, 129–143 (2009)Google Scholar
  2. 2.
    Chandran, D., Copeland, W.B., Sleight, S.C., Sauro, H.M.: Mathematical modeling and synthetic biology. Drug Discovery Today Disease Models 5(4), 299–309 (2008)CrossRefGoogle Scholar
  3. 3.
    Burgard, A.P., Pharkya, P., Maranas, C.D.: OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strains optimization. Biotechnol. Bioeng. 84, 647–657 (2003)CrossRefGoogle Scholar
  4. 4.
    Patil, K.R., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6, 308 (2005)CrossRefGoogle Scholar
  5. 5.
    Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9, 499 (2008)CrossRefGoogle Scholar
  6. 6.
    Pham, D.T., Ghanbarzadeh, A., Koç, E., Otri, S., Zaidi, M.: The bees algorithm – a novel tool for complex optimization problems. In: Proceedings of the Second International Virtual Conference on Intelligent Production Machines and Systems, July 3-14 (2006)Google Scholar
  7. 7.
    Choon, Y.W., Mohamad, M.S., Deris, S., Chong, C.K., Chai, L.E., Ibrahim, Z., Omatu, S.: Identifying Gene Knockout Strategies Using a Hybrid of Bees Algorithm and Flux Balance Analysis For in silico Optimization of Microbial Strains. In: The 9th International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2012. University of Salamanca, Spain (2012)Google Scholar
  8. 8.
    Pham, D.T., Darwish, A.H., Eldukhri, E.E.: Optimisation of a fuzzy logic controller using the bees algorithm. International Journal of Computer Aided Engineering and Technology 1(2), 250–264 (2006)CrossRefGoogle Scholar
  9. 9.
    Olague, G., Puente, C.: The Honeybee Search Algorithm for Three-Dimensional Reconstruction. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 427–437. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Pham, D.T., Ghanbarzadeh, A.: Multi-objective optimisation using the bees algorithm. Paper Proceedings of the Third International Virtual Conference on Intelligent Production Machines and Systems, July 2-13 (2007)Google Scholar
  11. 11.
    Cheng, M.Y., Lien, L.C.: A Hybrid Swarm Intelligence Based Particle Bee Algorithm For Benchmark Functions And Construction Site Layout Optimization. In: Proceedings of the 28th ISARC, Seoul, pp. 898–904 (2011)Google Scholar
  12. 12.
    Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology 4, 54 (2003)CrossRefGoogle Scholar
  13. 13.
    Bohl, K., Figueiredo, L.F.: d., Hadicke O., Klamt S., Kost C., Schuster S., Kaleta C: CASOP GS: Computing intervention strategies targeted at production improvement in genome-scale metabolic networks. In: The 5th German Conference on Bioinformatics 2010, September 20-22 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yee Wen Choon
    • 1
  • Mohd Saberi Bin Mohamad
    • 1
  • Safaai Deris
    • 1
  • Rosli Md. Illias
    • 2
  • Lian En Chai
    • 1
  • Chuii Khim Chong
    • 1
  1. 1.Artificial Intelligence and Bioinformatics Research Group, Faculty of Computer Science and Information SystemsUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Bioprocess Engineering, Faculty of Chemical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations