Freehand Tomographic Nuclear Imaging Using Tracked High-Energy Gamma Probes

  • Asli Okur
  • Dzhoshkun I. Shakir
  • Philipp Matthies
  • Alexander Hartl
  • Sibylle I. Ziegler
  • Markus Essler
  • Tobias Lasser
  • Nassir Navab
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Systems allowing freehand SPECT imaging inside the operating room have been introduced previously. In this work, we aim to take one step further and enable 3D freehand imaging using positron emitting radio-traces such as [18F]FDG. Our system combines a high-energy gamma probe with an optical tracking system. Detection of the 511 keV annihilation gammas from positron-emitting radio-tracers is modeled analytically. The algorithm iteratively reconstructs the radioactivity distribution within a localized volume of interest. Based on the PET/CT data of 7 patients with tumors and lymph node metastases in the head and neck region, we build a neck phantom with [18F]FDG-filled reservoirs representing tumors and lymph nodes. Using this phantom, we investigate the limitations and capabilities of our method. Finally, we discuss possible improvements and requirements needed so that our approach becomes clinically applicable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Wendler T, Hartl A, Lasser T, et al. Towards intra-operative 3D nuclear imaging: reconstruction of 3D radioactive distributions using tracked gamma probes. Lect Notes Computer Sci. 2007;4792:909–17.Google Scholar
  2. Wendler T, Herrmann K, Schnelzer A, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med. 2010;37(8):1452–61.Google Scholar
  3. Hartl A, Shakir DI, Kojchev R, et al. Freehand SPECT reconstructions using look up tables. Proc SPIE. 2012;8316:83162H.Google Scholar
  4. Meller B, Sommer K, Gerl J, et al. High energy probe for detecting lymph node metastases with 18F-FDG in patients with head and neck cancer. Nuklearmedizin. 2006;45(4):153–9.Google Scholar
  5. Kim WW, Kim JS, Hur SM, et al. Radioguided surgery using an intraoperative PET probe for tumor localization and verification of complete resection in differentiated thyroid cancer: a pilot study. Surgery. 2011;149(3):416–24.Google Scholar
  6. Stolin AV, Majewski S, Raylman RR, et al. Hand-held SiPM-based PET imagers for surgical applications. Proc IEEE NSS-MIC. 2011.Google Scholar
  7. Majewski S, Stolin A, Martone P, et al. Dedicated mobile PET prostate imager. J Nucl Med Meeting Abstracts. 2011;52(1):1945.Google Scholar
  8. Huber J, Moses W, Pouliot J, et al. Dual-modality PET/ultrasound imaging of the prostate. IEEE Nucl Sci Symp Conf Rec. 2005;4:2187–90.Google Scholar
  9. Huh SS, Rogers WL, Clinthorne NH. An investigation of an intra-operative PET imaging probe. IEEE Nucl Sci Symp Conf Rec. 2007; p. 552–5.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Asli Okur
    • 1
    • 2
  • Dzhoshkun I. Shakir
    • 1
    • 2
  • Philipp Matthies
    • 1
  • Alexander Hartl
    • 1
    • 2
  • Sibylle I. Ziegler
    • 2
  • Markus Essler
    • 2
  • Tobias Lasser
    • 1
    • 3
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical Procedures (CAMP)TU MünchenMünchenDeutschland
  2. 2.Dept. of Nuclear MedicineKlinikum rechts der Isar, TU MünchenMünchenDeutschland
  3. 3.Institute of Biomathematics and BiometryHelmholtz Zentrum MünchenMünchenDeutschland

Personalised recommendations