Image-Based Palpation Simulation With Soft Tissue Deformations Using Chainmail on the GPU

  • Dirk FortmeierEmail author
  • Andre Mastmeyer
  • Heinz Handels
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


Virtual reality surgery simulation can provide an environment for the safe training of medical interventions. In many of these interventions palpation of target organs is common to search for certain anatomical structures in a first step. We present a method for visuohaptic simulation with tissue deformation caused by palpation solely based on CT data of a patient. Generation of haptic force feedback involves a force parameter image based on distances to the patient’s skin and bone. To create a deformed version of the patient’s image data, the ChainMail method is applied; bone structures are considered to be undeformable. The simulation can be used to palpate the iliac crest and spinous processes for the preparation of a lumbar puncture or for palpation of the ribcage.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Färber M, Hummel F, Gerloff C, et al. Virtual Reality Simulator for the Training of Lumbar Punctures. Methods Inf Med. 2009;48(5):493–501.Google Scholar
  2. Coles TR, John NW, Gould D, et al. Integrating Haptics with Augmented Reality in a Femoral Palpation and Needle Insertion Training Simulation. IEEE Trans Haptics. 2011;4(3):199–209.Google Scholar
  3. Ullrich S, Kuhlen T. Haptic Palpation for Medical Simulation in Virtual Environments. IEEE Trans Vis Comput Graph. 2012;18(4):617–25.Google Scholar
  4. Fortmeier D, Mastmeyer A, Handels H. GPU-based Visualization of Deformable Volumetric Soft-Tissue for Real-time Simulation of Haptic Needle Insertion. In: Bildverarbeitung für die Medizin. Berlin: Springer; 2012. p. 117–22.Google Scholar
  5. Rössler F, Wolff T, Ertl T. Direct GPU-based Volume Deformation. In: Proceedings of Curac 2008. Leipzig; 2008. p. 65–8.Google Scholar
  6. Gibson SF. 3D Chainmail: A Fast Algorithm for Deforming Volumetric Objects. In: Proc Interactive 3D Graphics. New York: ACM; 1997. p. 149–ff.Google Scholar
  7. Lundin K, Ynnerman A, Gudmundsson B. Proxy-based Haptic Feedback from Volumetric Density Data. In: Eurohaptics Conference. United Kingdom: University of Edinburgh; 2002. p. 104–9.Google Scholar
  8. Bartz D, Gürvit. Haptic Navigation in Volumetric Datasets. In: Proc PHANToM Users Research Symposium. Konstanz: Hartung-Gorre; 2000. p. 43–7.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dirk Fortmeier
    • 1
    • 2
    Email author
  • Andre Mastmeyer
    • 1
  • Heinz Handels
    • 1
  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckDeutschland
  2. 2.Graduate School for Computing in Medicine and Life SciencesUniversity of LübeckLübeckDeutschland

Personalised recommendations