Co-Registration of Intra-Operative Photographs and Pre-Operative MR Images

  • Benjamin Berkels
  • Ivan Cabrilo
  • Sven Haller
  • Martin Rumpf
  • Carlo Schaller
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Brain shift, the change in configuration of the brain after opening the dura mater, is a key problem in neuronavigation. We present an approach to co-register intra-operative microscope images with preoperative MRI data to adapt and optimize intra-operative neuronavigation. The tools are a robust classification of sulci on MRI extracted cortical surfaces, guided user marking of most prominent sulci on a microscope image, and the actual variational registration method with a fidelity energy for 3D deformations of the cortical surface combined with a higher order, linear elastica type prior energy. Furthermore, the actual registration is validated on an artificial testbed and on real data of a neuro clinical patient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Clarkson MJ, Rueckert D, Hill DLG, et al. Using photo-consistency to register 2D optical images of the human face to a 3D surface model. IEEE Trans Pattern Anal Mach Intell. 2001;23(11):1266–80.Google Scholar
  2. Bauer S, Berkels B, Ettl S, et al. Marker-less reconstruction of dense 4-D surface motion fields using active laser triangulation from sparse measurements for respiratory motion management. Proc MICCAI. 2012;7510:414–21.Google Scholar
  3. Dalal SS, Edwards E, Kirsch HE, et al. Localization of neurosurgically implanted electrodes via photograph–MRI–radiograph coregistration. J Neurosci Methods. 2008;174(1):106–15.Google Scholar
  4. Wang A, Mirsattari SM, Parrent AG, et al. Fusion and visualization of intraoperative cortical images with preoperative models for epilepsy surgical planning and guidance. Comput Aided Surg. 2011;16(4):149–60.Google Scholar
  5. Reinges MHT, Nguyen HH, Krings T, et al. Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien). 2004;146(4):369–77.Google Scholar
  6. Fischla B, Serenob MI, Dalea AM. Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System. Neuroimage. 1999;9(2):195–207.Google Scholar
  7. Clarenz U, Rumpf M, Telea A. Robust feature detection and local classification for surfaces based on moment analysis. IEEE Trans Vis Comput Graph. 2004;10(5):516–24.Google Scholar
  8. Berkels B, Kotowski M, Rumpf M, et al. Sulci detection in photos of the human cortex based on learned discriminative dictionaries. Lect Notes Computer Sci. 2011.Google Scholar
  9. Modersitzki J. Numerical Methods for Image Registration. Oxford University Press; 2004.Google Scholar
  10. Kuhnt D, Bauer MH, Nimsky C. Brain shift compensation and neurosurgical image fusion using intraoperative MRI: current status and future challenges. Crit Rev Biomed Eng. 2012;40:175–85.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Berkels
    • 1
  • Ivan Cabrilo
    • 2
  • Sven Haller
    • 2
  • Martin Rumpf
    • 1
  • Carlo Schaller
    • 2
  1. 1.Institut für Numerische SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnDeutschland
  2. 2.Hôpitaux Universitaires de GenèveGenevaSwitzerland

Personalised recommendations