A Temporal Network Version of Watts’s Cascade Model

  • Fariba Karimi
  • Petter HolmeEmail author
Part of the Understanding Complex Systems book series (UCS)


Threshold models of cascades in the social and economical sciences explain the spread of opinion and innovation as an effect of social influence. In threshold cascade models, fads or innovation spread between agents as determined by their interactions to other agents and their personal threshold of resistance. Typically, these models do not account for structure in the timing of interaction between the units. In this work, we extend a model of social cascades by Duncan Watts to temporal interaction networks. In our model, we assume agents are influenced by their friends and acquaintances at certain time into the past. That is, the influence of the past ages and becomes unimportant. Thus, our modified cascade model has an effective time window of influence. We explore two types of thresholds—thresholds to fractions of the neighbors, or absolute numbers. We try our model on six empirical datasets and compare them with null models.


Time Window Null Model Threshold Model Cascade Model Temporal Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support by the Swedish Research Council and the WCU program through NRF Korea funded by MEST R31–2008–10029. The authors thank Taro Takaguchi for comments.


  1. 1.
    Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Alg. 30, 257–286 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Bass, F.: A new product growth model for consumer durables. Manag. Sci. 50, 1833–1840 (1969)CrossRefGoogle Scholar
  4. 4.
    Dodds, P.S., Watts, D.J.: Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Dunne, J.A., Williams, R.J., Martinez, N.D.: Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. USA 99, 12917–12922 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101, 14333–14337 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Fontes, L.R.G., Schonmann, R.H.: Bootstrap percolation on homogeneous trees has 2 phase transitions. J. Stat. Phys. 132, 839–861 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Goh, K.I., Barabási, A.L.: Burstiness and memory in complex systems. EPL 81, 48002 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  10. 10.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRefGoogle Scholar
  11. 11.
    Holme, P., Edling, C.E., Liljeros, F.: Structure and time-evolution of an internet dating community. Soc. Network 26, 155–174 (2004)CrossRefGoogle Scholar
  12. 12.
    Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)Google Scholar
  14. 14.
    Karimi, F., Holme, P.: Threshold model of cascades in temporal networks (2012). E-print 1207.1206Google Scholar
  15. 15.
    Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Latané, B.: Dynamic social impact: the creation of culture by communication. J. Comm. 46, 13–25 (1996)CrossRefGoogle Scholar
  17. 17.
    Latané, B., L’Herrou, T.: Spatial clustering in the conformity game: dynamic social impact in electronic groups. J. Pers. Soc. Psychol. 70, 1218–1230 (1996)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.J.: Networks: An introduction. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  19. 19.
    Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamic shape the sexual networks of internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 107, 5706–5711 (2010)ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Said, A., De Luca, E.W., Albayrak, S.: How social relationships affect user similarities. In: Proceedings of the ACM IUI’10 Workshop on Social Recommender Systems (2010)Google Scholar
  21. 21.
    Takaguchi, T., Masuda, N., Holme, P.: Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics (2012). E-print 1206.2097Google Scholar
  22. 22.
    Valente, T.W.: Network Models of the Diffusion of Innovations. Hampton Press, Gresskill (1995)Google Scholar
  23. 23.
    Vazquez, A., Raćz, B., Lukaćs, A., Barabaśi, A.L.: Impact of non-poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99, 5766–5771 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IceLab, Department of PhysicsUmeå UniversityUmeåSweden
  2. 2.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  3. 3.Department of SociologyStockholm UniversityStockholmSweden

Personalised recommendations