Advertisement

Self-Exciting Point Process Modeling of Conversation Event Sequences

  • Naoki Masuda
  • Taro Takaguchi
  • Nobuo Sato
  • Kazuo Yano
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

Keywords

Event Rate Direct Numerical Simulation Event Sequence Trigger Event Probability Generate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

N. M. acknowledges the support provided through Grants-in-Aid for Scientific Research (No. 23681033, and Innovative Areas “Systems Molecular Ethology” (No. 20115009)) from MEXT, Japan. T. T. acknowledges the support provided through Grants-in-Aid for Scientific Research (No. 10J06281) from JSPS, Japan.

References

  1. 1.
    Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.L.: Uncovering individual and collective human dynamics from mobile phone records. J. Phys. A 41, 224015 (2008)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5, e11596 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. USA 105, 15649–15653 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Dahlhaus, R., Eichler, M., Sandkühler, J.: Identification of synaptic connections in neural ensembles by graphical models. J. Neurosci. Meth. 77, 93–107 (1997)CrossRefGoogle Scholar
  6. 6.
    Ebel, H., Mielsch, L.I., Bornholdt, S.: Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103(R) (2002)Google Scholar
  7. 7.
    Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101, 14333–14337 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Goh, K.I., Barabási, A.L.: Burstiness and memory in complex systems. Europhys. Lett. 81, 48002 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Han, X.P., Zhou, T., Wang, B.H.: Modeling human dynamics with adaptive interest. New J. Phys. 10, 073010 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Hawkes, A.G.: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. B 33, 438–443 (1971)MathSciNetADSzbMATHGoogle Scholar
  12. 12.
    Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83–90 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hawkes, A.G., Oakes, D.: A cluster process representation of a self-exciting process. J. Appl. Prob. 11, 493–503 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRefGoogle Scholar
  15. 15.
    Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., Gesualdo, F., Pandolfi, E., Ravà, L., Rizzo, C., Tozzi, A.E.: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS ONE 6, e17144 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)Google Scholar
  18. 18.
    Jo, H.H., Karsai, M., Kertész, J., Kaski, K.: Circadian pattern and burstiness in mobile phone communication. New J. Phys. 14, 013055 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Karsai, M., Kaski, K., Barabási, A.L., Kertész, J.: Universal features of correlated bursty behaviour. Sci. Rep. 2, article No. 397 (2012)Google Scholar
  20. 20.
    Krumin, M., Reutsky, I., Shoham, S.: Correlation-based analysis and generation of multiple spike trains using Hawkes models with an exogenous input. Front. Comput. Neurosci. 4, 147 (2010)CrossRefGoogle Scholar
  21. 21.
    Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.N.: A Poissonian explanation for heavy tails in e-mail communication. Proc. Natl. Acad. Sci. USA 105, 18153–18158 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Malmgren, R.D., Stouffer, D.B., Campanharo, A.S.L.O., Amaral, L.A.N.: On universality in human correspondence activity. Science 325, 1696–1700 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Min, B., Goh, K.I., Kim, I.M.: Waiting time dynamics of priority-queue networks. Phys. Rev. E 79, 056110 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Mitchell, L., Cates, M.E.: Hawkes process as a model of social interactions: a view on video dynamics. J. Phys. A 43, 045101 (2010)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inform. Theor. 27, 23–31 (1981)zbMATHCrossRefGoogle Scholar
  26. 26.
    Ogata, Y.: Seismicity analysis through point-process modeling: a review. Pure Appl. Geophys. 155, 471–507 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Ogata, Y., Akaike, H.: On linear intensity models for mixed doubly stochastic Poisson and self-exciting point-processes. J. R. Stat. Soc. B 44, 102–107 (1982)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Oliveira, J.G., Vazquez, A.: Impact of interactions on human dynamics. Physica A 388, 187–192 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Ozaki, T.: Maximum likelihood estimation of Hawkes’ self-exciting point processes. Ann. Inst. Stat. Math. 31, 145–155 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Pernice, V., Staude, B., Cardanobile, S., Rotter, S.: How structure determines correlations in neuronal networks. PLoS Comput. Biol. 7, e1002059 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Reynaud-Bouret, P., Schbath, S.: Adaptive estimation for Hawkes processes; application to genome analysis. Ann. Stat. 38, 2781–2822 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamics shape the sexual networks of Internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 107, 5706–5711 (2010)ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    Takaguchi, T., Nakamura, M., Sato, N., Yano, K., Masuda, N.: Predictability of conversation partners. Phys. Rev. X 1, 011008 (2011)CrossRefGoogle Scholar
  34. 34.
    Takaguchi, T., Sato, N., Yano, K., Masuda, N.: Importance of individual events in temporal networks. New J. Phys. 14, 093003 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Vázquez, A., Oliveira, J.G., Dezsö, Z., Goh, K.I., Kondor, I., Barabási, A.L.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73, 036127 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Vere-Jones, D.: Stochastic models for earthquake occurrence. J. R. Stat. Soc. B 32, 1–62 (1970)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Wakisaka, Y., Ohkubo, N., Ara, K., Sato, N., Hayakawa, M., Tsuji, S., Horry, Y., Yano, K., Moriwaki, N.: Beam-scan sensor node: reliable sensing of human interactions in organization. In: 2009 Sixth International Conference on Networked Sensing Systems (INSS). pp. 1–4. IEEE Press, Piscataway (2009)Google Scholar
  38. 38.
    Wu, Y., Zhou, C., Xiao, J., Kurths, J., Schellnhuber, H.J.: Evidence for a bimodal distribution in human communication. Proc. Natl. Acad. Sci. USA 107, 18803–18808 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Yano, K., Ara, K., Moriwaki, N., Kuriyama, H.: Measurement of human behavior: creating a society for discovering opportunities. Hitachi Rev. 58, 139–144 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Naoki Masuda
    • 1
  • Taro Takaguchi
    • 1
  • Nobuo Sato
    • 2
  • Kazuo Yano
    • 2
  1. 1.Department of Mathematical InformaticsThe University of TokyoTokyoJapan
  2. 2.Central Research Laboratory, Hitachi, Ltd.Kokubunji-shi, TokyoJapan

Personalised recommendations