Rule-Based Combination of Comorbid Treatments for Chronic Diseases Applied to Hypertension, Diabetes Mellitus and Heart Failure

  • Joan Albert López-Vallverdú
  • David Riaño
  • Antoni Collado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7738)


The treatment of patients with several chronic diseases (comorbidities) has become a frequent actuation of health-care professionals in their daily practice. As different treatments are needed for each disease, there is a risk of undesired drug interactions that must be detected and solved using evidence-based medical knowledge. In this paper we have extracted part of this knowledge for the comorbidities of hypertension, diabetes mellitus and heart failure, and we have represented it by means of combination rules. A rule execution system has been developed which is able to combine treatments of different diseases into a unique comorbid treatment avoiding undesired drug interactions. The system has been checked by health-care professionals of the SAGESSA Health-care group in 20 medical cases.


Heart Failure Insulin Glargine Anatomical Therapeutic Chemical Insulin Detemir Combination Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohada, J.A., Riaño, D., López-Vallverdú, J.A.: Automatic Generation of Clinical Algorithms within the State-Decision-Action Model. Expert Systems with Applications 39, 10709–10721 (2012)CrossRefGoogle Scholar
  2. 2. Drug interaction checker. English, (last accessed May 15, 2012)
  3. 3.
    Gijsen, R., Hoeymans, N., Schellevis, F.G., et al.: Causes and consequences of comorbidity: A review. Journal of Clinical Epidemiology 54(7), 661–674 (2001)Google Scholar
  4. 4.
    Grup SAGESSA. Guia de maneig de la hipertensió (2003),
  5. 5.
    Grup SAGESSA. Guia de maneig de la diabetis (2002),
  6. 6.
    Grup SAGESSA. Guia de maneig de la insuficiència cardíaca (2008),
  7. 7.
    Hospital Consortium SAGESSA. Spanish, (last accessed May 15, 2012)
  8. 8.
    López-Vallverdú, J.A., Riaño, D., Collado, A.: Detecting Dominant Alternative Interventions to Reduce Treatment Costs. In: Riaño, D., ten Teije, A., Miksch, S. (eds.) KR4HC 2011. LNCS, vol. 6924, pp. 131–144. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Kane, R.L., Ouslander, J.G., Abrass, I.B.: Essentials of clinical geriatrics: drug therapy, pp. 357–388. McGraw-Hill, Berkshire (2003)Google Scholar
  10. 10.
    Koppel, R., Metlay, J.P., Cohen, A., et al.: Role of Computerized Physician Order Entry Systems in Facilitating Medication Errors. JAMA 293(10), 1197–1203 (2005)CrossRefGoogle Scholar
  11. 11.
    Mallet, L., Spinewine, A., Huang, A.: The challenge of managing drug interactions in elderly people. The Lancet 370(9582), 185–191 (2007)CrossRefGoogle Scholar
  12. 12.
    Medscape reference. Drug interaction checker. English, (last accessed May 15, 2012)
  13. 13.
    Ostchega, Y., Dillon, C.F., Hughes, J.P., et al.: Trends in hypertension prevalence, awareness, treatment, and control in older U.S. adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. Journal of the American Geriatrics Society 55(7), 1056–1065 (2007)CrossRefGoogle Scholar
  14. 14.
    Riaño, R.: The SDA Model: A Set Theory Approach. In: Proc. Twentieth IEEE Int. Symp. Computer-Based Medical Systems, CBMS 2007, pp. 563–568 (2007)Google Scholar
  15. 15.
    Robert Wood Johnson Foundation and Partnership for Solutions: Chronic Conditions: Making the Case for Ongoing Care. Johns Hopkins University, Baltimore, MD (September 2004 Update)Google Scholar
  16. 16.
    Robinson, R.L., Burk, M.S.: Identification of drug-drug interactions with personal digital assistant–based software. The American Journal of Medicine 116(5), 357–358 (2004)CrossRefGoogle Scholar
  17. 17.
    Rosamond, W., Flegal, K., Furie, K., et al.: Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4), e25–e146 (2008)Google Scholar
  18. 18.
    Valderas, J.M., Starfield, B., Sibbald, B., et al.: Defining Comorbidity: Implications for Understanding Health and Health Services. Annals of Family Medicine 7(4), 357–363 (2009)CrossRefGoogle Scholar
  19. 19.
    Wild, S., Roglic, G., Green, A., et al.: Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27(5), 1047–1053 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joan Albert López-Vallverdú
    • 1
  • David Riaño
    • 1
  • Antoni Collado
    • 2
  1. 1.Research Group on Artificial IntelligenceUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Grup SagessaTarragonaSpain

Personalised recommendations