Medical (Visual) Information Retrieval

  • Henning Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7757)


This text gives a broad overview of the domain of visual medical information retrieval and medical information analysis/search in general. The goal is to describe the specifics of medical information analysis and more specifically of medical visual information retrieval in this book of the PROMISE winter school. The text is meant to deliver an annotated bibliography of important papers and tendencies in the domain that can then guide the reader to find more detailed information on this quickly developing research domain. This text is by no means a systematic review in the field, so some citations might be subjective but should lead the reader to further publications. The given references will provide a solid starting point for exploring the domain of medical visual information retrieval.


Medical information retrieval content–based image retrieval medical visual information retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simel, D., Drummond, R.: The rational clinical examination: evidence–based clinical diagnosis. McGraw-Hill (August 2008)Google Scholar
  2. 2.
    Bui, A.A.T., Taira, R.K., Dionision, J.D.N., Aberle, D.R., El-Saden, S., Kangarloo, H.: Evidence–based radiology. Academic Radiology 9(6), 662–669 (2002)CrossRefGoogle Scholar
  3. 3.
    Hunter, L., Cohen, K.B.: Biomedical language processing: What’s beyond pubmed? Molecular Cell 21(5), 589–594 (2006)CrossRefGoogle Scholar
  4. 4.
    Riding the wave: How europe can gain from the rising tide of scientific data. Submission to the European Comission (October 2010),
  5. 5.
    Zhang, C., De Sterck, H., Aboulnaga, A., Djambazian, H., Sladek, R.: Case Study of Scientific Data Processing on a Cloud Using Hadoop. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 400–415. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Safran, C., Bloomrosen, M., Hammond, W.E., Labkoff, S., Markel-Fox, S., Tang, P.C., Detmer, D.E.: Toward a national framework for the secondary use of health data: An american medical informatics association white paper. MIM 14, 1–9 (2007)Google Scholar
  7. 7.
    Elger, B., Iavindrasana, J., Iacono, L.L., Müller, H., Roduit, N., Summers, P., Wright, J.: Strategies for health data exchange for secondary, cross–institutional clinical research. Computer Methods and Programs in Biomedicine 99(3), 230–251 (2010)CrossRefGoogle Scholar
  8. 8.
    Hersh, W.: Information Retrieval — A health and Biomedical Perspective, 2nd edn. Springer (2003)Google Scholar
  9. 9.
    Hersh, W., Jensen, J., Müller, H., Gorman, P., Ruch, P.: A qualitative task analysis for developing an image retrieval test collection. In: ImageCLEF/MUSCLE Workshop on Image Retrieval Evaluation, Vienna, Austria, pp. 11–16 (2005)Google Scholar
  10. 10.
    Hoogendam, A., de Vries Robbé, P.F., Overbeke, A.J.: Answers to questions posed during daily patient care are more likely to be answered by uptodate than pubmed. Journal of Medical Internet Research 10(4) (2008)Google Scholar
  11. 11.
    Hersh, W.R., Hickam, D.H.: How well do physicians use electronic information retrieval systems? Journal of the American Medical Association 280(15), 1347–1352 (1998)CrossRefGoogle Scholar
  12. 12.
    Müller, H., Despont-Gros, C., Hersh, W., Jensen, J., Lovis, C., Geissbuhler, A.: Health care professionals’ image use and search behaviour. In: Proceedings of the Medical Informatics Europe Conference (MIE 2006), pp. 24–32. IOS Press, Studies in Health Technology and Informatics, Maastricht, The Netherlands (2006)Google Scholar
  13. 13.
    Glasgow, J., Jurisica, I.: Integration of case–based and image–based reasoning. In: AAAI Workshop on Case–Based Reasoning Integrations, pp. 67–74. AAAI Press, Menlo Park (1998)Google Scholar
  14. 14.
    Kahn Jr., C., Thao, C.: Goldminer: A radiology image search engine. American Journal of Roentgenology 188, 1475–1478 (2008)CrossRefGoogle Scholar
  15. 15.
    Ruch, P., Baud, R., Geissbuhler, A.: Using lexical disambiguation and named–entity recognition to improve spelling correction in the electronique patient record. AIM 29, 169–184 (2003)Google Scholar
  16. 16.
    Franz, P., Zaiss, A., Hahn, U., Schulz, S., Klar, R.: Automated coding of diagnoses – three methods compared. In: Proceedings of the Annual Symposium of the American Society for Medical Informatics (AMIA), Los Angeles, CA, USA (November 2000)Google Scholar
  17. 17.
    Gobeill, J., Theodoro, D., Patsche, E., Ruch, P.: Taking benefit of query and document expansion using MeSH descriptors in medical ImageCLEF 2009. Working Notes of the 2009 CLEF Workshop, Corfu, Greece (September 2009)Google Scholar
  18. 18.
    Lanlotz, C.P.: Radlex: A new method for indexing online educational materials. Radiographics 26, 1595–1597 (2006)CrossRefGoogle Scholar
  19. 19.
    Müller, H., Schumacher, M., Godel, D., Khaled, O.A., Mooser, F., Ding, S.: Medicoordination: A practical approach to interoperability in the swiss health system. In: The Medical Informatics Europe Conference (MIE 2009), Sarajevo, Bosnia–Herzegovina, pp. 210–214 (August 2009)Google Scholar
  20. 20.
    Ide, N.C., Loane, R.F., Demner-Fushman, D.: Application of information technology: Essie: A concept–based search engine for structured biomedical text. Journal of the American Medical Informatics Association 14(3), 253–263 (2007)CrossRefGoogle Scholar
  21. 21.
    Demner-Fushman, D., Antani, S., Siadat, M.R., Soltanian-Zadeh, H., Fotouhi, F., Elisevich, K.: Automatically finding images for clinical decision support. In: Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW 2007, pp. 139–144. IEEE Computer Society, Washington, DC (2007)Google Scholar
  22. 22.
    Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. IPM 24(5), 513–523 (1988)Google Scholar
  23. 23.
    van Rijsbergen, C.J.: Information Retrieval. Prentice Hall, Englewood Cliffs (1979)zbMATHGoogle Scholar
  24. 24.
    Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content–based image retrieval systems in medicine–clinical benefits and future directions. International Journal of Medical Informatics 73(1), 1–23 (2004)CrossRefGoogle Scholar
  25. 25.
    Akgül, C., Rubin, D., Napel, S., Beaulieu, C., Greenspan, H., Acar, B.: Content–based image retrieval in radiology: Current status and future directions. Journal of Digital Imaging 24(2), 208–222 (2011)CrossRefGoogle Scholar
  26. 26.
    Tang, L.H.Y., Hanka, R., Ip, H.H.S.: A review of intelligent content–based indexing and browsing of medical images. HIJ 5, 40–49 (1999)Google Scholar
  27. 27.
    Lowe, H.J., Antipov, I., Hersh, W., Smith, C.A.: Towards knowledge–based retrieval of medical images. The role of semantic indexing, image content representation and knowledge–based retrieval. In: Proceedings of the Annual Symposium of the American Society for Medical Informatics (AMIA), Nashville, TN, USA, pp. 882–886 (October 1998)Google Scholar
  28. 28.
    Tagare, H.D., Jaffe, C., Duncan, J.: Medical image databases: A content–based retrieval approach. Journal of the American Medical Informatics Association 4(3), 184–198 (1997)CrossRefGoogle Scholar
  29. 29.
    Dahmen, J., Theiner, T., Keysers, D., Ney, H., Lehmann, T., Wein, B.: Classification of radiographs in the ’image retrieval in medical applications’ — system (IRMA). In: 6th International RIAO Conference on Content-Based Multimedia Information Access, Paris, France, pp. 551–566 (April 2000)Google Scholar
  30. 30.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content–based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  31. 31.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 1–60 (2008)CrossRefGoogle Scholar
  32. 32.
    Jörgensen, C.: Retrieving the unretrievable in electronic imaging systems: emotions, themes and stories. In: Rogowitz, B., Pappas, T.N. (eds.) Human Vision and Electronic Imaging IV, San Jose, California, USA, January 23-29. SPIE Proc., vol. 3644. SPIE Photonics West Conference (1999)Google Scholar
  33. 33.
    Aisen, A.M., Broderick, L.S., Winer-Muram, H., Brodley, C.E., Kak, A.C., Pavlopoulou, C., Dy, J., Shyu, C.R., Marchiori, A.: Automated storage and retrieval of thin–section CT images to assist diagnosis: System description and preliminary assessment. Radiology 228(1), 265–270 (2003)CrossRefGoogle Scholar
  34. 34.
    Depeursinge, A., Sage, D., Hidki, A., Platon, A., Poletti, P.A., Unser, M., Müller, H.: Lung tissue classification using Wavelet frames. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, Lyon, France, pp. 6259–6262. IEEE Computer Society (2007)CrossRefGoogle Scholar
  35. 35.
    Hsu, W., Antani, S., Long, L.R., Neve, L., Thoma, G.R.: Spirs: A web-based image retrieval system for large biomedical databases. International Journal of Medical Informatics 78(suppl. 1), S13–S24 (2009); MedInfo 2007 CrossRefGoogle Scholar
  36. 36.
    Costa, M.J., Tsymbal, A., Hammon, M., Cavallaro, A., Sühling, M., Seifert, S., Comaniciu, D.: A Discriminative Distance Learning–Based CBIR Framework for Characterization of Indeterminate Liver Lesions. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS, vol. 7075, pp. 92–104. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Depeursinge, A., Fischer, B., Müller, H., Deserno, T.M.: Prototypes for content–based image retrieval in clinical practice. The Open Medical Informatics Journal 5, 58–72 (2011)CrossRefGoogle Scholar
  38. 38.
    Clough, P., Müller, H., Sanderson, M.: The CLEF 2004 Cross-Language Image Retrieval Track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  39. 39.
    Hersh, W., Müller, H., Kalpathy-Cramer, J., Kim, E., Zhou, X.: The consolidated ImageCLEFmed medical image retrieval task test collection. Journal of Digital Imaging 22(6), 648–655 (2009)CrossRefGoogle Scholar
  40. 40.
    Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experimental Evaluation in Visual Information Retrieval. The Springer International Series on Information Retrieval, vol. 32. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  41. 41.
    Kalpathy-Cramer, J., Müller, H., Bedrick, S., Eggel, I., García Seco de Herrera, A., Tsikrika, T.: The CLEF 2011 medical image retrieval and classification tasks. Working Notes of CLEF 2011 (Cross Language Evaluation Forum) (September 2011)Google Scholar
  42. 42.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation, OSDI 2004, vol. 6, p. 10. USENIX Association, Berkeley (2004)Google Scholar
  43. 43.
    Markonis, D., Holzer, M., Dung, S., Vargas, A., Langs, G., Kriewel, S., Müller, H.: A survey on visual information search behavior and requirements of radiologists. Methods of Information in Medicine (forthcoming 2012)Google Scholar
  44. 44.
    Quellec, G., Lamard, M., Cazuguel, G., Roux, C., Cochener, B.: Case retrieval in medical databases by fusing heterogeneous information. IEEE Transactions on Medical Imaging 30(1), 108–118 (2011)CrossRefGoogle Scholar
  45. 45.
    Depeursinge, A., Vargas, A., Platon, A., Geissbuhler, A., Poletti, P.–A., Müller, H.: 3D Case–Based Retrieval for Interstitial Lung Diseases. In: Caputo, B., Müller, H., Syeda-Mahmood, T., Duncan, J.S., Wang, F., Kalpathy-Cramer, J. (eds.) MCBR-CDS 2009. LNCS, vol. 5853, pp. 39–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  46. 46.
    Zhou, X., Depeursinge, A., Stern, R., Lovis, C., Müller, H.: Case–based visual retrieval of fractures. International Journal of Computer Assisted Radiology and Surgery 5(suppl. 1), 11548/S162–11548/S163 (2010)Google Scholar
  47. 47.
    Depeursinge, A., Zrimec, T., Busayarat, S., Müller, H.: 3D lung image retrieval using localized features. In: Medical Imaging 2011: Computer–Aided Diagnosis. SPIE, vol. 7963, p. 79632E (2011)Google Scholar
  48. 48.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3d models. ACM Transactions on Graphics 22(1), 83–105 (2003)CrossRefGoogle Scholar
  49. 49.
    Johnson, T.R.C., Krauß, B., Sedlmair, M., Grasruck, M., Bruder, H., Morhard, D., Fink, C., Weckbach, S., Lenhard, M., Schmidt, B., Flohr, T., Reiser, M.F., Becker, C.R.: Material differentiation by dual energy CT: initial experience. European Radiology 17(6), 1510–1517 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Henning Müller
    • 1
    • 2
  1. 1.University of Applied Sciences Western Switzerland (HES-SO)Switzerland
  2. 2.University and University Hospitals of Geneva (HUG)Switzerland

Personalised recommendations