Urban Mashups

  • Daniele Dell’AglioEmail author
  • Irene Celino
  • Emanuele Della Valle


Cities are alive: they rise, grow, evolve like living beings. The state of a city changes continuously, influenced by a lot of factors, both human (people moving in the city or extending it) and natural ones (rain or climate changes). Cities are potentially huge sources of data of any kind and for the last years a lot of effort has been put in order to create and extract those sources. This scenario offers a lot of opportunities for mashup developers: by combining and processing the huge amount of data (both public and private) is possible to create new services for urban stakeholders—citizens, tourists, etc. In this chapter, we illustrate the challenges in developing mashups for the urban environments: starting out from the specificity of cities and the availability of urban data and services, we describe a number of scenarios for urban mashups, we present our experience in realizing demonstrators of urban mashups and we discuss the lesson learned and the implications for citizens, tourists and municipalities.


Sentiment Analysis Smart City Road Sign SPARQL Query Open Street 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially funded by the EU LarKC Project (FP7-215535). We would like to thank the project partners for their collaboration and in particular: Stefano Ceri, Tony Lee, Volker Tresp and Frank van Harmelen.


  1. 1.
    Auer S, Lehmann J, Hellmann S (2009) LinkedGeoData—adding a spatial dimension to the web of data. In: Proceedings of ISWC 2009 Google Scholar
  2. 2.
    Balduini M, Celino I, Dell’Aglio D, Della Valle E, Huang Y, Lee T, Kim S-H, Tresp V (2012) BOTTARI: an augmented reality mobile application to deliver personalized and location-based recommendations by continuous analysis of social media streams. J Web Semant 16:33–41. doi: 10.1016/j.websem.2012.06.004 CrossRefGoogle Scholar
  3. 3.
    Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) C-SPARQL: a continuous query language for RDF data streams. Int J Semant Comput 4(1):3–25 zbMATHCrossRefGoogle Scholar
  4. 4.
    Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) Incremental reasoning on streams and rich background knowledge. In: Proceedings of ESWC2010 Google Scholar
  5. 5.
    Barbieri DF, Braga D, Ceri S, Della Valle E, Huang Y, Tresp V, Rettinger A, Wermser H (2010) Deductive and inductive stream reasoning for semantic social media analytics. IEEE Intell Syst 25(6):32–41 CrossRefGoogle Scholar
  6. 6.
    Bassoli A, Brewer J, Martin K, Dourish P, Mainwaring S (2007) Underground aesthetics: rethinking urban computing. IEEE Pervasive Comput 6(3):39–45 CrossRefGoogle Scholar
  7. 7.
    Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semant Web Inf Syst 5(3):1–22 (special issue on Linked Data) CrossRefGoogle Scholar
  8. 8.
    Carroll JJ, Bizer C, Hayes PJ, Stickler P (2005) Named graphs, provenance and trust. In: WWW, pp 613–622 Google Scholar
  9. 9.
    Celino I, Dell’Aglio D, Della Valle E, Grothmann R, Steinke F, Tresp V (2011) Integrating machine learning in a semantic web platform for traffic forecasting and routing. In: Proceedings of the 3rd international workshop on inductive reasoning and machine learning for the semantic web (IRMLeS 2011), collocated with the 8th extended semantic web conference, ESWC2011, Heraklion Google Scholar
  10. 10.
    Celino I, Dell’Aglio D, Della Valle E, Huang Y, Lee T, Kim S-H, Tresp V (2011) Towards BOTTARI: using stream reasoning to make sense of location-based micro-posts. In: Garcia-Castro R et al. (eds) ESWC 2011 workshops. Lecture notes in computer science, vol 7117. Springer, Heidelberg, pp 80–87 CrossRefGoogle Scholar
  11. 11.
    Celino I, Contessa S, Corubolo M, Dell’Aglio D, Della Valle E, Fumeo S, Krüger T (2012) Linking smart cities datasets with human computation—the case of UrbanMatch. In: Proceedings of 11th international semantic web conference 2012, Boston Google Scholar
  12. 12.
    Chan KT, King I, Yuen M-C (2009) Mathematical modeling of social games. In: Proceedings of IEEE CSE conference 2009, vol 4, pp 1205–1210 Google Scholar
  13. 13.
    Chapelle O, Schölkopf B, Zien A (eds) (2006) Semi-supervised learning. MIT Press, Cambridge Google Scholar
  14. 14.
    Cheptsov A, Assel M, Gallizo G, Celino I, Dell’Aglio D, Bradeško L, Witbrock M, Della Valle E (2011) Large knowledge collider. A service-oriented platform for large-scale semantic reasoning. In: Proceedings of international conference on web intelligence, mining and semantics (WIMS 2011) Google Scholar
  15. 15.
    Davis CA, Vieira Monteiro AM (eds) (2007) Advances in geoinformatics. VIII Brazilian symposium on geoinformatics, GEOINFO 2006, Campos do Jordão (SP), November 19–22, 2006. Springer, Berlin, 315 pp zbMATHGoogle Scholar
  16. 16.
    Della Valle E, Celino I, Dell’Aglio D, Kim K, Huang Z, Tresp V, Hauptmann W, Huang Y, Grothmann R (2008) Urban computing: a challenging problem for semantic technologies. In: NeFoRS 2008 workshop on new forms of reasoning for the semantic web: scalable, tolerant and dynamic, co-located with ASWC 2008—the 3rd Asian semantic web conference, Bangkok Google Scholar
  17. 17.
    Della Valle E, Ceri S, van Harmelen F, Fensel D (2009) It’s a streaming world! Reasoning upon rapidly changing information. IEEE Intell Syst 24(6):83–89 CrossRefGoogle Scholar
  18. 18.
    Della Valle E, Celino I, Dell’Aglio D (2010) The experience of realizing a semantic web urban computing application. Trans GIS 14(2):163–181 CrossRefGoogle Scholar
  19. 19.
    Della Valle E, Celino I, Dell’Aglio D, Grothmann R, Steinke F, Tresp V (2011) Semantic traffic-aware routing using the larkc platform. IEEE Internet Comput 15(6):15–23 CrossRefGoogle Scholar
  20. 20.
    Dourish P, Anderson K, Nafus D (2007) Cultural mobilities: diversity and agency in urban computing. In: Baranauskas MCC, Palanque PA, Abascal J, Barbosa SDJ (eds) INTERACT (2). Lecture notes in computer science, vol 4663. Springer, Berlin, pp 100–113 Google Scholar
  21. 21.
    ESRI (1998) ESRI shapefile technical description.
  22. 22.
    Schieck AF, Lopez de Vallejo I, Penn A (2005) Urban space and pervasive systems. In: The seventh international conference on ubiquitous computing, September 2005 Google Scholar
  23. 23.
    Fullerton T (2008) Game design workshop, a playcentric approach to creating innovative games. Gama network series. Morgan Kaufmann, San Mateo Google Scholar
  24. 24.
    Giffinger R, Fertner C, Kramar H, Meijers E (2007) City-ranking of European medium-sized cities. Centre of Regional Science, Vienna UT Google Scholar
  25. 25.
    Goodchild M (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221 CrossRefGoogle Scholar
  26. 26.
    Greenfield A (2006) No boundaries: the challenge of ubiquitous design. Adobe Design Center Google Scholar
  27. 27.
    Heath T, Bizer C (2011) Linked data: evolving the web into a global data space. Synthesis lectures on the semantic web. Morgan and Claypool, San Francisco Google Scholar
  28. 28.
    Huang Z, Fang J, Park S, Lee T (2011) Noisy semantic data processing in Seoul road sign management system. In: Proceedings of the 10th international semantic web conference (ISWC2011), Bonn Google Scholar
  29. 29.
    Ji Q, Gao Z, Huang Z (2011) Reasoning with noisy semantic data. In: ESWC (2), pp 497–502 Google Scholar
  30. 30.
    Kindberg T, Chalmers M, Paulos E (2007) Guest editors’ introduction: urban computing. IEEE Pervasive Comput 6(3):18–20 CrossRefGoogle Scholar
  31. 31.
    Lee TK, Park S, Huang Z, Della Valle E (2010) Toward Seoul road sign management on LarKC platform. In: Polleres A, Chen H (eds) ISWC posters and demos. CEUR workshop proceedings, vol 658. Google Scholar
  32. 32.
    Markowetz A, Chen Y-y, Suel T (2005) Design and implementation of a geographic search engine. In: WebDB Google Scholar
  33. 33.
    O’Neill E, Kostakos V, Kindberg T, Schieck AF, Penn, A, Danae Stanton F, Jones T (2006) Instrumenting the city: developing methods for observing and understanding the digital cityscape. In: Dourish P, Friday A (eds) Ubicomp. Lecture notes in computer science, vol 4206. Springer, Berlin, pp 315–332 Google Scholar
  34. 34.
    Open Knowledge Foundation. The open data handbook. Technical report Google Scholar
  35. 35.
    Scheider S, Possin J (2012) Affordance-based individuation of junctions in open street map. J Spat Inf Sci 4(1):31–56 Google Scholar
  36. 36.
    ter Horst HJ (2005) Completeness, decidability and complexity of entailment for RDF schema and a semantic extension involving the OWL vocabulary. J Web Semant 3(2–3):79–115 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tresp V, Huang Y, Bundschus M, Rettinger A (2009) Materializing and querying learned knowledge. In: Proceedings of IRMLeS 2009 Google Scholar
  38. 38.
    von Ahn L (2006) Games with a purpose. Computer 39(6):92–94 CrossRefGoogle Scholar
  39. 39.
    von Ahn L (2008) Human computation. In: Alonso G, Blakeley JA, Chen ALP (eds) ICDE. IEEE Press, New York, pp 1–2 Google Scholar
  40. 40.
    Weiser M (1991) The computer for the twenty-first century. Sci Am 265(3):94–104 CrossRefGoogle Scholar
  41. 41.
    Zimmermann HG, Neuneier R (2001) Neural network architectures for the modeling of dynamical systems. In: Kolen JF, Kremer S (eds) A field guide to dynamical recurrent networks. IEEE Press, New York, pp 311–350 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniele Dell’Aglio
    • 1
    • 2
    Email author
  • Irene Celino
    • 1
  • Emanuele Della Valle
    • 2
  1. 1.CEFRIELMilanItaly
  2. 2.Dipartimento di Elettronica, Informatica e Bioingegneria—DEIBPolitecnico di MilanoMilanItaly

Personalised recommendations