Material Strain Tensor

  • Pavel A. Zhilin
  • Holm Altenbach
  • Elena A. Ivanova
  • Anton Krivtsov
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 22)

Abstract

The problem of description of large inelastic deformations of solids is considered. On a simple discrete model it is shown that the classical concept of deformations used in continuum mechanics can exhibit serious difficulties due to reorganizations of the internal structure of materials. The way of construction of constitutive equations in continuum mechanics aimed to avoid these problems is proposed. A method of introduction of material strain tensor for the inelastic continuum is suggested. The paper is based on the report: P. A. Zhilin, A.  Krivtsov: Point mass simulation of inelastic extension process. It was prepared for the ICIAM 95 (Third International Congress on Industrial and Applied Mathematics, Hamburg, Germany, July 3–7, 1995), but not accepted for publication.

Keywords

Strain Tensor Anisotropic Material Inelastic Deformation Cauchy Stress Tensor Logarithmic Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are deeply grateful to O.T. Bruhns for helpful discussions of the final version of the paper.

References

  1. 1.
    Truesdell, C.: First Course in Rational Continuum Mechanics: General Concepts (2nd edn.), vol. 1. Academic Press, San Diego (1991)Google Scholar
  2. 2.
    Palmov, V.A.: Vibrations of Elasto-Plastic Bodies. Springer, Berlin (1998)MATHCrossRefGoogle Scholar
  3. 3.
    Altenbach, H.: Kontinuumsmechanik - Eine elementare Einführung in die materialunabhängigen und materialabhängigen Gleichungen. Springer-Vieweg, Heidelberg (2012)Google Scholar
  4. 4.
    Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34(1), 57–64 (1929)MATHCrossRefGoogle Scholar
  5. 5.
    Krivtsov, A.: Deformation and Fracture of Solids with Microstructure (in Russ.). Fizmatlit, Moscow (2007)Google Scholar
  6. 6.
    Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)MATHGoogle Scholar
  7. 7.
    Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)CrossRefGoogle Scholar
  8. 8.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications to Mechanics. World Scientific, Singapore (2010)CrossRefGoogle Scholar
  9. 9.
    Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta. Mech. 124, 89–105 (1997)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Palmov, V.A.: Fundamental Laws of Nature in Nonlinear Thermomechanics of Deformoble Bodies (in Russ.). SPbSTU Publishing, St. Petersburg (2008)Google Scholar
  11. 11.
    Golovanov, A.I.: Kinematics of finite deformations 3D isoparametrical finite elements for shells (in Russ.). Probl. Strength. Plast. 70, 109–122 (2008)Google Scholar
  12. 12.
    Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoelastic equation \({{\vec{\tau }} }^{\circ *} = \lambda ({\rm {tr}}{\bf {D}}){\bf {I}}+2\upmu {\bf {D}}\) and its significance to finite inelasticity. Acta. Mech. 138, 31–50 (1999)Google Scholar
  13. 13.
    Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta.Mech. 182, 31–111 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta. Mech. 216, 301–332 (2011)MATHCrossRefGoogle Scholar
  15. 15.
    Xiao, H., Bruhns, O.T., Meyers, A.: A new aspect in the kinematics of large deformations. In: Gupta, N.K. (ed.) Plasticity and Impact Mechanics, pp. 100–109. New Age International Ltd Publishing, New Delhi (1997)Google Scholar
  16. 16.
    Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc. Royal Soc. Lond. A. 460, 909–928 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pavel A. Zhilin
    • 1
    • 2
  • Holm Altenbach
    • 1
  • Elena A. Ivanova
    • 2
  • Anton Krivtsov
    • 2
  1. 1.Faculty of Mechanical EngineeringOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Saint Petersburg State Polytechnical University, Institute for Problems in Mechanical Engineering, Russian Academy of Sciences St. PetersburgRussia

Personalised recommendations