Asymptotic Fingerprinting Capacity in the Combined Digit Model

  • Dion Boesten
  • Boris Škorić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7692)


We study the channel capacity of q-ary fingerprinting in the limit of large attacker coalitions. We extend known results by considering the Combined Digit Model, an attacker model that captures signal processing attacks such as averaging and noise addition. For q = 2 we give results for various attack parameter settings. For q ≥ 3 we present the relevant equations without providing a solution. We show how the channel capacity in the Restricted Digit Model is obtained as a limiting case of the Combined Digit Model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. In: SODA 2009, pp. 336–345 (2009)Google Scholar
  2. 2.
    Anthapadmanabhan, N.P., Barg, A., Dumer, I.: Fingerprinting capacity under the marking assumption. IEEE Transaction on Information Theory – Special Issue on Information-theoretic Security 54(6), 2678–2689Google Scholar
  3. 3.
    Blayer, O., Tassa, T.: Improved versions of Tardos’ fingerprinting scheme. Designs, Codes and Cryptography 48(1), 79–103 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boesten, D., Škorić, B.: Asymptotic Fingerprinting Capacity for Non-binary Alphabets. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 1–13. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Charpentier, A., Xie, F., Fontaine, C., Furon, T.: Expectation maximization decoding of Tardos probabilistic fingerprinting code. In: Media Forensics and Security. SPIE Proceedings, vol. 7254, p. 72540 (2009)Google Scholar
  6. 6.
    Huang, Y.W., Moulin, P.: Saddle-point solution of the fingerprinting capacity game under the marking assumption. In: Proc. IEEE International Symposium on Information Theory, ISIT (2009)Google Scholar
  7. 7.
    Kuribayashi, M.: Tardos”s Fingerprinting Code over AWGN Channel. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 103–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kuribayashi, M.: A New Soft Decision Tracing Algorithm for Binary Fingerprinting Codes. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kuribayashi, M., Akashi, N., Morii, M.: On the systematic generation of Tardos’s fingerprinting codes. In: MMSP 2008, pp. 748–753 (2008)Google Scholar
  10. 10.
    Laarhoven, T., de Weger, B.M.M.: Optimal symmetric Tardos traitor tracing schemes (2011),
  11. 11.
    Meerwald, P., Furon, T.: Towards Joint Tardos Decoding: The ‘Don Quixote’ Algorithm. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 28–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Moulin, P.: Universal fingerprinting: Capacity and random-coding exponents. In Preprint arXiv:0801.3837v2 (2008),
  13. 13.
    Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improvement of discrete Tardos fingerprinting codes. Des. Codes Cryptography 52(3), 339–362 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimal probabilistic fingerprinting codes using optimal finite random variables related to numerical quadrature. CoRR, abs/cs/0610036 (2006)Google Scholar
  15. 15.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC 2003, pp. 116–125 (2003)Google Scholar
  16. 16.
    Škorić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Designs, Codes and Cryptography 46(2), 137–166 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Škorić, B., Katzenbeisser, S., Schaathun, H.G., Celik, M.U.: Tardos Fingerprinting Codes in the Combined Digit Model. IEEE Transactions on Information Forensics and Security 6(3), 906–919 (2011)CrossRefGoogle Scholar
  18. 18.
    Škorić, B., Vladimirova, T.U., Celik, M.U., Talstra, J.C.: Tardos fingerprinting is better than we thought. IEEE Trans. on Inf. Theory 54(8), 3663–3676 (2008)CrossRefGoogle Scholar
  19. 19.
    Xie, F., Furon, T., Fontaine, C.: On-off keying modulation and Tardos fingerprinting. In: MM&Sec 2008, pp. 101–106 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dion Boesten
    • 1
  • Boris Škorić
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations