Advertisement

Efficient, Adaptively Secure, and Composable Oblivious Transfer with a Single, Global CRS

  • Seung Geol Choi
  • Jonathan Katz
  • Hoeteck Wee
  • Hong-Sheng Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7778)

Abstract

We present a general framework for efficient, universally composable oblivious transfer (OT) protocols in which a single, global, common reference string (CRS) can be used for multiple invocations of oblivious transfer by arbitrary pairs of parties. In addition:

  • Our framework is round-efficient. E.g., under the DLIN or SXDH assumptions we achieve round-optimal protocols with static security, or 3-round protocols with adaptive security (assuming erasure).

  • Our resulting protocols are more efficient than any known previously, and in particular yield protocols for string OT using O(1) exponentiations and communicating O(1) group elements.

Our result improves on that of Peikert et al. (Crypto 2008), which uses a CRS whose length depends on the number of parties in the network and achieves only static security. Compared to Garay et al. (Crypto 2009), we achieve adaptive security with better round complexity and efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Beaver, D., Haber, S.: Cryptographic Protocols Provably Secure against Dynamic Adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 136–145. IEEE (2001)Google Scholar
  6. 6.
    Canetti, R.: Obtaining Universally Compoable Security: Towards the Bare Bones of Trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 88–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. Journal of Cryptology 19(2), 135–167 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 494–503. ACM Press (May 2002)Google Scholar
  10. 10.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved Non-committing Encryption with Applications to Adaptively Secure Protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-Box Constructions of Adaptively Secure Protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Damgård, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Fischlin, M., Libert, B., Manulis, M.: Non-interactive and Re-usable Universally Composable String Commitments with Adaptive Security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Garay, J.A., MacKenzie, P., Yang, K.: Efficient and Universally Composable Committed Oblivious Transfer and Applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 297–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat Non-committing Encryption and Efficient Adaptively Secure Oblivious Transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. Journal of Cryptology 25(1), 158–193 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Horvitz, O., Katz, J.: Universally-Composable Two-Party Computation in Two Rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Lindell, A.Y.: Efficient Fully-Simulatable Oblivious Transfer. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Lindell, A.Y.: Adaptively Secure Two-Party Computation with Erasures. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Lindell, Y.: Highly-Efficient Universally-Composable Commitments Based on the DDH Assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Lindell, Y., Oxman, E., Pinkas, B.: The IPS Compiler: Optimizations, Variants and Concrete Efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 259–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457. ACM-SIAM (2001)Google Scholar
  31. 31.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  33. 33.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Scott, M.: Authenticated ID-based key exchange and remote log-in with simple token and PIN. Cryptology ePrint Archive, Report 2002/164 (2002)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Seung Geol Choi
    • 1
  • Jonathan Katz
    • 2
  • Hoeteck Wee
    • 3
  • Hong-Sheng Zhou
    • 2
  1. 1.Columbia UniversityUSA
  2. 2.University of MarylandUSA
  3. 3.George Washington UniversityUSA

Personalised recommendations