Vector Commitments and Their Applications

  • Dario Catalano
  • Dario Fiore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7778)

Abstract

We put forward the study of a new primitive that we call Vector Commitment (VC, for short). Informally, VCs allow to commit to an ordered sequence of q values (m1, . . . , mq) in such a way that one can later open the commitment at specific positions (e.g., prove that mi is the i-th committed message). For security, Vector Commitments are required to satisfy a notion that we call position binding which states that an adversary should not be able to open a commitment to two different values at the same position. Moreover, what makes our primitive interesting is that we require VCs to be concise, i.e. the size of the commitment string and of its openings has to be independent of the vector length.

We show two realizations of VCs based on standard and well established assumptions, such as RSA, and Computational Diffie-Hellman (in bilinear groups). Next, we turn our attention to applications and we show that Vector Commitments are useful in a variety of contexts, as they allow for compact and efficient solutions which significantly improve previous works either in terms of efficiency of the resulting solutions, or in terms of ”quality” of the underlying assumption, or both. These applications include: Verifiable Databases with Efficient Updates, Updatable Zero-Knowledge Databases, and Universal Dynamic Accumulators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Micciancio, D.: A New Paradigm for Collision-Free Hashing: Incrementality at Reduced Cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Benaloh, J.C., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to Digital Signatures (Extended Abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Catalano, D., Dodis, Y., Visconti, I.: Mercurial Commitments: Minimal Assumptions and Efficient Constructions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 120–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Catalano, D., Fiore, D.: Vector commitments and their applications. Cryptology ePrint Archive (2011), http://eprint.iacr.org/2011/495
  10. 10.
    Catalano, D., Fiore, D., Messina, M.: Zero-Knowledge Sets with Short Proofs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Catalano, D., Di Raimondo, M., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. IEEE Transactions on Information Theory 57(4), 2488–2502 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial Commitments with Applications to Zero-Knowledge Sets. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gennaro, R., Micali, S.: Independent Zero-Knowledge Sets. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 34–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Hohenberger, S., Waters, B.: Short and Stateless Signatures from the RSA Assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomials and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Li, J., Li, N., Xue, R.: Universal Accumulators with Efficient Nonmembership Proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Libert, B., Peters, T., Yung, M.: Group Signatures with Almost-for-Free Revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–589. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Libert, B., Yung, M.: Concise Mercurial Vector Commitments and Independent Zero-Knowledge Sets with Short Proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Liskov, M.: Updatable Zero-Knowledge Databases. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M., Kwong, A., Stubblebine, S.G.: A general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Maurer, U.M., Wolf, S.: Diffie-Hellman Oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: 44th FOCS, pp. 80–91. IEEE Computer Society Press (October 2003)Google Scholar
  24. 24.
    Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS, pp. 120–130. IEEE Computer Society Press (October 1999)Google Scholar
  25. 25.
    Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proceedings of the 7th Conference on USENIX Security Symposium, vol. 7, p. 17 (1998)Google Scholar
  26. 26.
    Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Papamanthou, C., Tamassia, R.: Time and Space Efficient Algorithms for Two-Party Authenticated Data Structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Sakemi, Y., Hanaoka, G., Izu, T., Takenaka, M., Yasuda, M.: Solving a Discrete Logarithm Problem with Auxiliary Input on a 160-Bit Elliptic Curve. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 595–608. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Stefanov, E., van Dijk, M., Oprea, A., Juels, A.: Iris: A scalable cloud file system with efficient integrity checks. Cryptology ePrint Archive, Report 2011/585 (2011), http://eprint.iacr.org/
  30. 30.
    Tamassia, R., Triandopoulos, N.: Certification and authentication of data structures. In: Alberto Mendelzon Workshop on Foundations of Data Management (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Dario Catalano
    • 1
  • Dario Fiore
    • 2
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CataniaItaly
  2. 2.Max Planck Institute for Software Systems (MPI-SWS)Germany

Personalised recommendations