Verifiably Encrypted Signatures with Short Keys Based on the Decisional Linear Problem and Obfuscation for Encrypted VES

  • Ryo Nishimaki
  • Keita Xagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7778)

Abstract

Verifiably encrypted signatures (VES) are signatures encrypted by a public key of a trusted third party and we can verify their validity without decryption. This paper proposes a new VES scheme which is secure under the decisional linear (DLIN) assumption in the standard model. We also propose new obfuscators for encrypted signatures (ES) and encrypted VES (EVES) which are secure under the DLIN assumption.

All previous efficient VES schemes in the standard model are either secure under standard assumptions (such as the computational Diffie-Hellman assumption) with large verification (or secret) keys or secure under (non-standard) dynamic q-type assumptions (such as the q-strong Diffie-Hellman extraction assumption) with short verification keys. Our construction is the first efficient VES scheme with short verification (and secret) keys secure under a standard assumption (DLIN).

As by-products of our VES scheme, we construct new obfuscators for ES/EVES based on our new VES scheme. They are more efficient than previous obfuscators with respect to the public key size. Previous obfuscators for EVES are secure under non-standard assumption and use zero-knowledge (ZK) proof systems and Fiat-Shamir heuristics to obtain non-interactive ZK, i.e., its security is considered in the random oracle model. Thus, our construction also has an advantage with respect to assumptions and security models. Our new obfuscator for ES is obtained from our new obfuscator for EVES.

Keywords

verifiably encrypted signature obfuscation encrypted verifiably encrypted signature decisional linear assumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-Size Structure-Preserving Signatures: Generic Constructions and Simple Assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012), full version available from http://eprint.iacr.org/2012/285CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with off-line TTP. In: IEEE Symposium on Security and Privacy, pp. 77–85. IEEE Computer Society (1998)Google Scholar
  4. 4.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)Google Scholar
  12. 12.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106. IEEE (2011)Google Scholar
  13. 13.
    Cheng, R., Zhang, B., Zhang, F.: Secure Obfuscation of Encrypted Verifiable Encrypted Signatures. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 188–203. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Coron, J.-S., Naccache, D.: Boneh et al.’s k-Element Aggregate Extraction Assumption Is Equivalent to the Diffie-Hellman Assumption. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 392–397. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178. ACM (2009)Google Scholar
  18. 18.
    Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3 arithmetic circuits. In: FOCS, pp. 107–109. IEEE (2011)Google Scholar
  19. 19.
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Gentry, C., Halevi, S., Smart, N.P.: Fully Homomorphic Encryption with Polylog Overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual Form Signatures: An Approach for Proving Security from Static Assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Hada, S.: Zero-Knowledge and Code Obfuscation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Hada, S.: Secure Obfuscation for Encrypted Signatures. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Rückert, M.: Verifiably Encrypted Signatures from RSA without NIZKs. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 363–377. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Rückert, M., Schneider, M., Schröoder, D.: Generic Constructions for Verifiably Encrypted Signatures without Random Oracles or NIZKs. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 69–86. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Rückert, M., Schröder, D.: Security of Verifiably Encrypted Signatures and a Construction without Random Oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009), full version available from http://eprint.iacr.org/2009/385CrossRefGoogle Scholar
  32. 32.
    Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient Verifiably Encrypted Signature and Partially Blind Signature from Bilinear Pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Ryo Nishimaki
    • 1
  • Keita Xagawa
    • 1
  1. 1.NTT Secure Platform LaboratoriesMusashino-shiJapan

Personalised recommendations