Advertisement

Non-Interactive Key Exchange

  • Eduarda S. V. Freire
  • Dennis Hofheinz
  • Eike Kiltz
  • Kenneth G. Paterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7778)

Abstract

Non-interactive key exchange (NIKE) is a fundamental but much-overlooked cryptographic primitive. It appears as a major contribution in the ground-breaking paper of Diffie and Hellman, but NIKE has remained largely unstudied since then. In this paper, we provide different security models for this primitive and explore the relationships between them. We then give constructions for secure NIKE in the Random Oracle Model based on the hardness of factoring and in the standard model based on the hardness of a variant of the decisional Bilinear Diffie Hellman Problem for asymmetric pairings. We also study the relationship between NIKE and public key encryption (PKE), showing that a secure NIKE scheme can be generically converted into an IND-CCA secure PKE scheme. Our conversion also illustrates the fundamental nature of NIKE in public key cryptography.

Keywords

non-interactive key exchange public-key cryptography pairings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Çapar, Ç., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.: Signal-flow-based analysis of wireless security protocols. Information and Computation (to appear)Google Scholar
  3. 3.
    Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and On-Line Deniability of Authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Boyd, C., Mao, W., Paterson, K.G.: Key Agreement Using Statically Keyed Authenticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 248–262. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, pp. 26–28 (2000)Google Scholar
  8. 8.
    Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T., Reidt, S., Wolthusen, S.D.: Strongly-Resilient and Non-interactive Hierarchical Key-Agreement in MANETs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 49–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key distribution, identity-based encryption and trapdoor discrete log groups. Des. Codes Cryptography 52(2), 219–241 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  12. 12.
    Shoup, V.: On formal models for secure key exchange (version 4) (1999)Google Scholar
  13. 13.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp. 390–399. ACM (2006)Google Scholar
  17. 17.
    Ristenpart, T., Yilek, S.: The Power of Proofs-of-Possession: Securing Multiparty Signatures against Rogue-Key Attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Hofheinz, D., Kiltz, E.: The Group of Signed Quadratic Residues and Applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Hofheinz, D., Jager, T., Kiltz, E.: Short Signatures from Weaker Assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)Google Scholar
  23. 23.
    Chatterjee, S., Sarkar, P.: Generalization of the Selective-ID Security Model for HIBE Protocols. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 241–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. Cryptology ePrint Archive, Report 2012/xxx (2012), http://eprint.iacr.org/
  26. 26.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits. Journal of Cryptology 13(2), 221–244 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Galindo, D.: Boneh-Franklin Identity Based Encryption Revisited. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 791–802. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33, 167–226 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Eduarda S. V. Freire
    • 1
  • Dennis Hofheinz
    • 2
  • Eike Kiltz
    • 3
  • Kenneth G. Paterson
    • 1
  1. 1.Royal Holloway, University of LondonUK
  2. 2.Karlsruhe Institute of TechnologyGermany
  3. 3.Ruhr-Universität BochumGermany

Personalised recommendations