Attribute-Based Encryption with Fast Decryption

  • Susan Hohenberger
  • Brent Waters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7778)

Abstract

Attribute-based encryption (ABE) is a vision of public key encryption that allows users to encrypt and decrypt messages based on user attributes. This functionality comes at a cost. In a typical implementation, the size of the ciphertext is proportional to the number of attributes associated with it and the decryption time is proportional to the number of attributes used during decryption. Specifically, many practical ABE implementations require one pairing operation per attribute used during decryption.

This work focuses on designing ABE schemes with fast decryption algorithms. We restrict our attention to expressive systems without system-wide bounds or limitations, such as placing a limit on the number of attributes used in a ciphertext or a private key. In this setting, we present the first key-policy ABE system where ciphertexts can be decrypted with a constant number of pairings. We show that GPSW ciphertexts can be decrypted with only 2 pairings by increasing the private key size by a factor of |Γ|, where Γ is the set of distinct attributes that appear in the private key. We then present a generalized construction that allows each system user to independently tune various efficiency tradeoffs to their liking on a spectrum where the extremes are GPSW on one end and our very fast scheme on the other. This tuning requires no changes to the public parameters or the encryption algorithm. Strategies for choosing an individualized user optimization plan are discussed. Finally, we discuss how these ideas can be translated into the ciphertext-policy ABE setting at a higher cost.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayo Akinyele, J., Belvin, G., Garman, C., Pagano, M., Rushanan, M., Martin, P., Miers, I., Green, M., Rubin, A.: Charm: A tool for rapid cryptographic prototyping (2012), http://www.charm-crypto.com/
  2. 2.
    Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols, C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor. Comput. Sci. 422, 15–38 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-Policy Attribute-Based Encryption with Constant-Size Ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel (1996)Google Scholar
  5. 5.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  6. 6.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute Based Encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  14. 14.
    Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Lewko, A., Waters, B.: Unbounded HIBE and Attribute-Based Encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Susan Hohenberger
    • 1
  • Brent Waters
    • 2
  1. 1.Johns Hopkins UniversityUSA
  2. 2.University of Texas at AustinUSA

Personalised recommendations