Fringe 2013 pp 321-324 | Cite as

Сomputational Simulation of the Light Propagation Process through Nonlinear Media

Abstract

It is known that intensity-dependent phase changes (by temporal self-action effects) and intensity changes (by spatial self-action effects) distort the wavefront of light as it propagates through the medium [1], therefore one can not propagate images directly through a nonlinear medium [2] (indirect methods can be used, but they do not allow to measure internal light wave mixing or its dynamics).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, G.P.: Nonlinear Fiber Optics, 630 p. Academic Press, Amsterdam (2013)Google Scholar
  2. 2.
    Barsi, C., Wan, W., Fleischer, J.W.: Imaging through nonlinear media using digital holography. Nature Photonics 3, 211–215 (2009)CrossRefGoogle Scholar
  3. 3.
    Schnars, U., Jüptner, W.P.O.: Digital recording and numerical reconstruction of holo-grams. J. Meas. Sci. Technol. 13, R85–R101 (2002)Google Scholar
  4. 4.
    Tsang, M., Psaltis, D., Omenetto, F.G.: Reverse propagation of femtosecond pulses in optical fibers. Optics Letters 28(20), 1873–1875 (2003)CrossRefGoogle Scholar
  5. 5.
    Puida, M., Ivanauskas, F.: Light beam phase retrieval in nonlinear media: a computer simulation. Liet. Matem. Rink. 45, 504–508 (2005)Google Scholar
  6. 6.
    Dylov, D., Waller, L., Fleischer, J.: Instability-driven recovery of diffused images. Optics Letters 36(18) (2011)Google Scholar
  7. 7.
    Jia, S., Wan, W., Fleischer, J.W.: Forward four-wave mixing with defocusing nonlinearity. Opt. Lett. 32, 1668–1670 (2007)CrossRefGoogle Scholar
  8. 8.
    Nalegaev, S.S., Petrov, N.V., Bespalov, V.G.: Iteration methods of phase problem solving in optics and their peculiarity. Scientific and Technical Journal of Information Technologies, Mechanics and Optics 6(82), 30–35 (2012)Google Scholar
  9. 9.
    Xiao, Y., Agrawal, G.P., Maywar, D.N.: Nonlinear pulse propagation: A time–transformation approach. Opt. Lett. 37, 1271–1273 (2012)CrossRefGoogle Scholar
  10. 10.
    Goy, A., Psaltis, D.: Digital reverse propagation in focusing Kerr media. Phys. Rev. A83, 031802(R), 031802-1 (2011)Google Scholar
  11. 11.
    Garcia, H., et al.: New approach to the measurement of the nonlinear refractive index of short (<25 m) lengths of silica and erbium-doped fibers. Opt. Lett. 28, 1796 (2003)CrossRefGoogle Scholar
  12. 12.
    Goodman, J.W.: Introduction to Fourier Optics, 3rd edn., 491 p. Roberts and Company Publishers (2005)Google Scholar
  13. 13.
    Fibich, G., Gaeta, A.L.: Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergey Nalegaev
    • 1
  • Nikolay Petrov
    • 1
  • Victor Bespalov
    • 1
  1. 1.National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia

Personalised recommendations