Advertisement

Analog Circuit Design Based on Robust POFs Using an Enhanced MOEA with SVM Models

  • Nuno Lourenço
  • Ricardo Martins
  • Manuel Barros
  • Nuno Horta
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 233)

Abstract

In this chapter, a multi-objective design methodology for automatic analog integrated circuits (IC) synthesis, which enhances the robustness of the solution by varying technological and environmental parameters, is presented. The automatic analog IC sizing tool GENOM-POF was implemented and used to demonstrate the methodology, and to verify the effect of corner cases on the Pareto optimal front (POF). To enhance the efficiency of the tool, a supervised learning strategy, which is based on Support Vector Machines (SVM), is used to create feasibility models that efficiently prune the design search space during the optimization process, thus, reducing the overall number of required evaluations. The GPOF-SVM optimization kernel consists of a modified version of the multi-objective evolutionary algorithm (MOEA), NSGA-II, and uses HSPICE® as the evaluation engine. The usage of standard inputs and outputs eases the integration with other design automation tools, either at system level or at physical level, which is the case of LAYGEN, an in-house layout generation tool. Finally, the approach was validated using benchmark examples, which consist of circuits tested with similar tools, particularly, the former GENOM tool and other tools from literature.

Keywords

Pareto Front Support Vector Machine Model Analog Circuit Pareto Optimal Front Very Large Scale Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McClean, B.: IC Market to Top $300 Billion for First Time in 2013, http://www.icinsights.com/ (accessed December 13, 2011)
  2. 2.
    Mori, K., Yamada, H., Takizawa, S.: System on Chip Age. In: The International Symposium on VLSI Technology, Systems, and Applications, Taipei, Taiwan (1993)Google Scholar
  3. 3.
    ITRS: International Technology Roadmap for Semiconductors - 2010 Update. ITRS, http://www.itrs.net (accessed December 10, 2011)
  4. 4.
    Gielen, G.G.E., Rutenbar, R.A.: Computer-aided design of analog and mixed-signal integrated circuits. Proc. IEEE 88(12), 1825–1852 (2000)CrossRefGoogle Scholar
  5. 5.
    Barros, M., Guilherme, J., Horta, N.: Analog circuits optimization based on evolutionary computation techniques. Integration, The VLSI Journal 43(1), 136–155 (2010)CrossRefGoogle Scholar
  6. 6.
    Barros, M.F.M., Guilherme, J.M.C., Horta, N.C.G.: Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques. SCI, vol. 294. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Barros, M., Guilherme, J., Horta, N.: GA-SVM feasibility model and optimization kernel applied to analog IC design automation. In: ACM Great Lakes Symposium on VLSI, Stresa-Lago Maggiore, Italy (2007)Google Scholar
  8. 8.
    Lourenco, N., Horta, N.: GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog ICs with Corners Validation. In: Genetic and Evolutionary Computation Conference, Philadelphia, USA (2012)Google Scholar
  9. 9.
    Degrauwe, M.G.R., Nys, O., Dijkstra, E., Rijmenants, J., Bitz, S., Goffart, B., Vittoz, E.A., Cserveny, S., Meixenberger, C., Stappen, G., Oguey, H.J.: IDAC: an interactive design tool for analog CMOS circuits. IEEE Journal of Solid State Circuits 22(6), 1106–1116 (1987)CrossRefGoogle Scholar
  10. 10.
    El-Turky, F., Perry, E.E.: BLADES: an artificial intelligence approach to analog circuit design. IEEE Transnsactions on Computer Aided Design 8(6), 680–692 (1989)CrossRefGoogle Scholar
  11. 11.
    Hershenson, M.D.M., Boyd, S.P., Lee, T.H.: GPCAD: a tool for CMOS op-amp synthesis. In: IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, USA (1998)Google Scholar
  12. 12.
    Kuo-Hsuan, M., Po-Cheng, P., Hung-Ming, C.: Integrated hierarchical synthesis of analog/RF circuits with accurate performance mapping. In: International Symposium on Quality Electronic Design, Santa Clara, California, USA (2011)Google Scholar
  13. 13.
    Gielen, G., Wambacq, P., Sansen, W.M.: Symbolic analysis methods and applications for analog circuits: a tutorial overview. Proc. of IEEE 82(2), 287–304 (1994)CrossRefGoogle Scholar
  14. 14.
    Cheng-Wu, L., Pin-Dai, S., Ya-Ting, S., Soon-Jyh, C.: A bias-driven approach for automated design of operational amplifiers. In: International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan (2009)Google Scholar
  15. 15.
    Phelps, R., Krasnicki, M., Rutenbar, R.A., Carley, L.R., Hellums, J.R.: Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Transactions on Computer Aided Design 19(6), 703–717 (2000)CrossRefGoogle Scholar
  16. 16.
    Alpaydin, G., Balkir, S., Dundar, G.: An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Transactions on Evolutionary Computation 7(3), 240–252 (2003)CrossRefGoogle Scholar
  17. 17.
    Deniz, E., Dundar, G.: Hierarchical performance estimation of analog blocks using Pareto Fronts. In: Conference on Ph.D. Research in Microelectronics and Electronics, Berlin, Germany (2010)Google Scholar
  18. 18.
    Roca, E., Castro-Lopez, R., Fernandez, F.V.: Hierarchical synthesis based on pareto-optimal fronts. In: European Conference on Circuit Theory and Design, Antalya, Turkey (2009)Google Scholar
  19. 19.
    Maulik, P.C., Carley, L.R., Rutenbar, R.A.: Integer programming based topology selection of cell-level analog circuits. IEEE Transactions on Computer Aided Design 14(4), 401–412 (1995)CrossRefGoogle Scholar
  20. 20.
    Kruiskamp, W., Leenaerts, D.: DARWIN: CMOS opamp synthesis by means of a genetic algorithm. In: ACM/IEEE Design Automation Conference, San Francisco, California, USA (1995)Google Scholar
  21. 21.
    Ning, Z.Q., Mouthaan, T., Wallinga, H.: SEAS: a simulated evolution approach for analog circuit synthesis. In: IEEE Custom Integrated Circuits Conference, San Diego, California, USA (1991)Google Scholar
  22. 22.
    McConaghy, T., Palmers, P., Steyaert, M., Gielen, G.G.E.: Trustworthy Genetic Programming-Based Synthesis of Analog Circuit Topologies Using Hierarchical Domain-Specific Building Blocks. IEEE Transactions on Evolutionar Computation 15(4), 557–570 (2011)CrossRefGoogle Scholar
  23. 23.
    Palmers, P., McConnaghy, T., Steyaert, M., Gielen, G.: Massively multi-topology sizing of analog integrated circuits. In: Design, Automation & Test in Europe, Nice, France (2009)Google Scholar
  24. 24.
    Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation 1(2), 109–128 (1997)CrossRefGoogle Scholar
  25. 25.
    Lohn, J.D., Colombano, S.P.: A circuit representation technique for automated circuit design. IEEE Transactions on Evolutionary Computation 3(3), 205–219 (1999)CrossRefGoogle Scholar
  26. 26.
    Sripramong, T., Toumazou, C.: The invention of CMOS amplifiers using genetic programming and current-flow analysis. IEEE Transactions on Computer Aided Design 21(11), 1237–1252 (2002)CrossRefGoogle Scholar
  27. 27.
    Shoou-Jinn, C., Hao-Sheng, H., Yan-Kuin, S.: Automated passive filter synthesis using a novel tree representation and genetic programming. IEEE Transactions on Evolutionary Computation 10(1), 93–100 (2006)CrossRefGoogle Scholar
  28. 28.
    Hongying, Y., Jingsong, H.: Evolutionary design of operational amplifier using variable-length differential evolution algorithm. In: International Conference on Computer Application and System Modeling, Taiyuan, China (2010)Google Scholar
  29. 29.
    Martens, E., Gielen, G.: Classification of analog synthesis tools based on their architecture selection mechanisms. Integration, the VLSI Journal 41(2), 238–252 (2008)CrossRefGoogle Scholar
  30. 30.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  31. 31.
    Synopsis, Hspice, http://www.synopsys.com (accessed December 14, 2011)
  32. 32.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent System Technology 2(3), 1–27 (2011)CrossRefGoogle Scholar
  33. 33.
    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9(2), 115–148 (1995)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Montgomery, D.C.: Design and analysis of experiments, 6th edn. John Wiley & Sons, Hoboken (2005)zbMATHGoogle Scholar
  35. 35.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical Report, Department of Computer Science, National Taiwan University (2003)Google Scholar
  36. 36.
    Lourenço, N., Vianello, M., Guilherme, J., Horta, N.: LAYGEN - Automatic Layout Generation of Analog ICs from Hierarchical Template Descriptions. In: Conference on Ph.D. Research in Microelectronics and Electronics, Otranto (Lecce), Italy (2006)Google Scholar
  37. 37.
    Martins, R., Lourenco, N., Horta, N.: LAYGEN II: Automatic Analog ICs Layout Generator based on a Template Approach. In: Genetic and Evolutionary Computation Conference, Philadelphia, USA (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nuno Lourenço
    • 1
    • 2
  • Ricardo Martins
    • 1
    • 2
  • Manuel Barros
    • 1
    • 3
  • Nuno Horta
    • 1
    • 2
  1. 1.Instituto de Telecomunicações, Lisboa, PortugalUniversidade Técnica de LisboaLisboaPortugal
  2. 2.Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal
  3. 3.Instituto Politécnico de TomarTomarPortugal

Personalised recommendations