Using πDDs in the Design of Reversible Circuits

(Work-In-Progress)
  • Mathias Soeken
  • Robert Wille
  • Shin-ichi Minato
  • Rolf Drechsler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7581)

Abstract

With πDDs a data structure has recently been introduced that offers a compact representation for sets of permutations. Since reversible functions constitute permutations on the input assignments, they can naturally be expressed using this data structure. However, its potential has not been exploited so far. In this work-in-progress report, we present and discuss possible applications of πDDs within the design of reversible circuits including techniques for synthesis, debugging, and an efficient determination of the number of minimal circuits. We observed that πDDs inhibit the same space complexities as truth tables and, hence, do not superior existing design methods in many cases. However, they are advantageous when dealing with several functions or gates at once.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wille, R., Le, H.M., Dueck, G.W., Große, D.: Quantified Synthesis of Reversible Logic. In: Design, Automation and Test in Europe, pp. 1015–1020. IEEE (March 2008)Google Scholar
  2. 2.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275. ACM (July 2009)Google Scholar
  3. 3.
    Kerntopf, P.: A New Heuristic Algorithm for Reversible Logic Synthesis. In: Design Automation Conference, pp. 834–837 (June 2004)Google Scholar
  4. 4.
    Soeken, M., Wille, R., Drechsler, R.: Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition. In: Int’l Design and Test Workshop, pp. 143–148 (December 2010)Google Scholar
  5. 5.
    Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Reversible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30. IEEE Computer Society (May 2006)Google Scholar
  6. 6.
    Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Reversible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE Computer Society (May 2009)Google Scholar
  7. 7.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of Reversible Circuits with Minimal Lines for Large Functions. In: Asia and South Pacific Design Automation Conference (January 2012)Google Scholar
  8. 8.
    Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Heidelberg (2009)MATHCrossRefGoogle Scholar
  9. 9.
    Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)Google Scholar
  10. 10.
    Minato, S.-I.: πDD: A New Decision Diagram for Efficient Problem Solving in Permutation Space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 90–104. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Toffoli, T.: Reversible Computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  12. 12.
    Minato, S.: Zero-Supressed BDDs for Set Manipulation in Combinational Problems. In: Design Automation Conference, pp. 272–277 (June 1993)Google Scholar
  13. 13.
    Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques. IEEE Trans. on CAD 28(5), 703–715 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathias Soeken
    • 1
    • 3
  • Robert Wille
    • 1
  • Shin-ichi Minato
    • 2
  • Rolf Drechsler
    • 1
    • 3
  1. 1.Institute of Computer ScienceUniversity of Bremen Group of Computer ArchitectureBremenGermany
  2. 2.Hokkaido UniversitySapporoJapan
  3. 3.DFKI GmbHCyber-Physical SystemsBremenGermany

Personalised recommendations