Property Checking of Quantum Circuits Using Quantum Multiple-Valued Decision Diagrams

  • Julia Seiter
  • Mathias Soeken
  • Robert Wille
  • Rolf Drechsler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7581)


For the validation and verification of quantum circuits mainly techniques based on simulation are applied. Although lots of effort has been put into the improvement of these techniques, ensuring the correctness still requires an exhaustive consideration of all input vectors. As a result, these techniques are particularly insufficient to prove a circuit to be error free.

As an alternative, we present a symbolic formal verification method that is based on Quantum Multiple-Valued Decision Diagrams (QMDDs), a data-structure allowing for a compact representation of quantum circuits. As a result, using QMDDs it is possible to check the correctness of a circuit without exhaustively considering all input patterns.


Root Node Model Check Input Pattern Equivalence Check Quantum Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  2. 2.
    Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.A.: Quantum logic synthesis by symbolic reachability analysis. In: Malik, S., Fix, L., Kahng, A.B. (eds.) Design Automation Conference, pp. 838–841. ACM (June 2004)Google Scholar
  3. 3.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. In: Tang, T. (ed.) Asia and South Pacific Design Automation Conference, pp. 272–275. ACM Press (January 2005)Google Scholar
  4. 4.
    Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Synthesis of Elementary Quantum Gate Circuits for Reversible Functions with Don’t Cares. In: Int’l Symp. on Multiple-Valued Logic, pp. 214–219 (May 2008)Google Scholar
  5. 5.
    Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum Circuit Simplification and Level Compaction. IEEE Trans. on CAD 27(3), 436–444 (2008)Google Scholar
  6. 6.
    Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of reversible and quantum circuits. In: Int’l Symp. on Design and Diagnostics of Electronic Circuits and Systems, pp. 341–345 (April 2010)Google Scholar
  7. 7.
    Yuan, J., Shultz, K., Pixley, C., Miller, H., Aziz, A.: Modeling design constraints and biasing in simulation using BDDs. In: Int’l Conf. on Computer-Aided Design, pp. 584–590 (November 1999)Google Scholar
  8. 8.
    Bergeron, J.: Writing Testbenches Using SystemVerilog. Springer (2006)Google Scholar
  9. 9.
    Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer (January 2006)Google Scholar
  10. 10.
    Wille, R., Große, D., Haedicke, F., Drechsler, R.: SMT-based Stimuli Generation in the SystemC Verification Library. In: Forum on Specification & Design Languages (September 2009)Google Scholar
  11. 11.
    Brand, D.: Verification of large synthesized designs. In: Lightner, M.R., Jess, J.A.G. (eds.) Int’l Conf. on Computer-Aided Design, pp. 534–537. IEEE Computer Society (1993)Google Scholar
  12. 12.
    Disch, S., Scholl, C.: Combinational Equivalence Checking Using Incremental SAT Solving, Output Ordering, and Resets. In: Asia and South Pacific Design Automation Conference, pp. 938–943 (2007)Google Scholar
  13. 13.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  14. 14.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Reversible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30. IEEE Computer Society (May 2006)Google Scholar
  16. 16.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 117–148 (2003)CrossRefGoogle Scholar
  17. 17.
    Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Reversible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE Computer Society (May 2009)Google Scholar
  18. 18.
    Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A Model Checker for Quantum Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)CrossRefGoogle Scholar
  20. 20.
    Vidal, G.: Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Letters 91, 147902 (2003)CrossRefGoogle Scholar
  21. 21.
    Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Royal Society London A 400(1818) (July 1985)Google Scholar
  23. 23.
    Miller, D.M., Wille, R., Dueck, G.: Synthesizing Reversible Circuits for Irreversible Functions. In: EUROMICRO Symp. on Digital System Design, pp. 749–756 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julia Seiter
    • 1
  • Mathias Soeken
    • 1
    • 2
  • Robert Wille
    • 1
  • Rolf Drechsler
    • 1
    • 2
  1. 1.Group of Computer ArchitectureInstitute of Computer Science, University of BremenBremenGermany
  2. 2.DFKI GmbHCyber-Physical SystemsBremenGermany

Personalised recommendations