Tutorial: Graphical Calculus for Quantum Circuits

  • Bob Coecke
  • Ross Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7581)


We explain the graphical zx-calculus for reasoning about qubits without any reference to the underlying categorical semantics, and illustrate its use on quantum circuits.


Quantum Circuit Hadamard Gate Target Qubit Graphical Calculus Equational Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Backens, M.: The ZX-calculus is complete for stabilizer quantum mechanics. In: Proceedings of Quantum Physic and Logic IX (2012)Google Scholar
  2. 2.
    Coecke, B., Duncan, R.: Interacting Quantum Observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13, 043016 (2011), arXiv:0906.4725 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and non-locality in categorical quantum mechanics. In: Chiribella, G., Spekkens, R.W. (eds.) Proceedings of 27th IEEE Conference on Logic in Computer Science (LiCS). Extended version to appear in: Quantum Theory: Informational Foundations and Foils. Springer (2012)Google Scholar
  5. 5.
    Coecke, B., Edwards, B., Spekkens, R.W.: Phase groups and the origin of non-locality for qubits. ENTCS 271(2), 15–36 (2011), arXiv:1003.5005Google Scholar
  6. 6.
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of the ACM 54(2) (2007), arXiv:quant-ph/0412135Google Scholar
  7. 7.
    Duncan, R., Perdrix, S.: Graph States and the Necessity of Euler Decomposition. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 167–177. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Duncan, R., Perdrix, S.: Rewriting Measurement-Based Quantum Computations with Generalised Flow. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 285–296. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, Caltech (2007), arXiv:quant-ph/9705052Google Scholar
  10. 10.
    Hillebrand, A.: Quantum protocols involving multiparticle entanglement and their representations in the ZX-calculus. MSc. thesis, University of Oxford (2011)Google Scholar
  11. 11.
    Horsman, C.: Quantum picturalism for topological cluster-state computing. New Journal of Physics 13, 095011 (2011), arXiv:1101.4722CrossRefGoogle Scholar
  12. 12.
    Zamdzhiev, V.N.: An abstract approach towards quantum secret sharing. MSc. thesis, University of Oxford (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bob Coecke
    • 1
  • Ross Duncan
    • 1
  1. 1.Oxford University and Université Libre de BruxellesUK

Personalised recommendations