Advertisement

Sightsmap: Crowd-Sourced Popularity of the World Places

  • Tanel Tammet
  • Ago Luberg
  • Priit Järv
Conference paper

Abstract

We analyse and combine a number of world-wide crowd-sourced geotagged databases with the goal to locate, describe and rate potential tourism targets in any area in the world. In particular, we address the problem of finding representative names and top POIs for popular areas, with the main focus on sightseeing. The results are demonstrated on the sightsmap.com site presenting a zoomable and pannable tourism popularity heat map along with popularity-sorted POI markers for concrete objects.

Keywords

Crowd-sourced mapping Popularity analysis Heat map Entity disambiguation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research has been supported by European Regional Development Fund.

References

  1. Alves, A., Pereira, F., Biderman, A. & Ratti, C (2009). Place Enrichment by Mining the Web. In M. Tscheligi, B. de Ruyter et al. (Eds.), Ambient Intelligence, 5859: 66-77. Springer Berlin.Google Scholar
  2. Crandall, D. J., Backstrom, L., Huttenlocher, D., & Kleinberg, J. (2009). Mapping the world’s photos. In Proceedings of the 18th international conference on World wide web: 761-770. ACM.Google Scholar
  3. Fisher, D. (2007). Hotmap: Looking at Geographic Attention. IEEE Transactions on Visualization and Computer Graphics 13(6): 1184-1191.CrossRefGoogle Scholar
  4. Kurata, Y. (20120) Potential-of-Interest Maps for Mobile Tourist Information Services. Information and Communication Technologies in Tourist 2012: 239-248. Springer Vienna.Google Scholar
  5. Luberg, A., Järv, P., Tammet, T. (2012) Information extraction for a tourist recommender system. Information and Communication Technologies in Tourism 2012: 343-354. Springer Vienna.Google Scholar
  6. Luberg, A., Tammet, T. & Järv, P. (2011). Smart City: A Rule-based Tourist Recommendation. Information and Communication Technologies in Tourism 2011: 51-63. Springer New York.Google Scholar
  7. Popescu, A., Grefenstette, G., Bouamor, H. (2009). Mining a Multilingual Geographical Gazetteer from the Web. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT ‘09), Vol. 1: 58-65. IEEE Washington.Google Scholar
  8. Popescu, A., Grefenstette, G., Moëllic, P.-A. (2008). Gazetiki: automatic creation of a geographical gazetteer. Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries (JCDL ‘08): 85-93. ACM New York.Google Scholar
  9. Zheng, Y. T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A.,… & Neven, H. (2009, June). Tour the world: building a web-scale landmark recognition engine. In Computer Vision and Pattern Recognition, 2009: 1085-1092.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Eliko Competence CentreTallinnEstonia
  2. 2.Tallinn University of TechnologyTallinnEstonia

Personalised recommendations