Advertisement

A Runtime Analysis of Graph-Theoretical Algorithms to Detect Patterns in Process Model Collections

  • Jörg Becker
  • Dominic Breuker
  • Patrick Delfmann
  • Hanns-Alexander Dietrich
  • Matthias Steinhorst
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 132)

Abstract

Pattern detection serves different purposes in managing large collections of process models, ranging from syntax checking to compliance validation. This paper presents a runtime analysis of four graph-theoretical algorithms for (frequent) pattern detection. We apply these algorithms to large collections of process and data models to demonstrate that, despite their theoretical intractability, they are able to return results within (milli-) seconds. We discuss the relative performance of these algorithms and their applicability in practice.

Keywords

Conceptual Model Analysis Subgraph Isomorphism Frequent Subgraph Detection Pattern Matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Awad, A., Sakr, S.: Querying Graph-Based Repositories of Business Process Models. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 33–44. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Becker, J., Schütte, R.: Handels informations systeme. Redline, Landsberg (2004)Google Scholar
  4. 4.
    Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL. Information Systems Journal 33(6), 477–507 (2008)CrossRefGoogle Scholar
  5. 5.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  6. 6.
    Conte, D., Foggia, P., Vento, M.: Challenging Complexity of Maximum Common Subgraph Detection Algorithms: A Performance Analysis of Three Algorithms on a Wide Database of Graphs. Journal of Graph Algorithms and Appl (JGAA) 11(1), 99–143 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  8. 8.
    Delfmann, P.: Adaptive Referenzmodellierung. Logos, Berlin (2006)Google Scholar
  9. 9.
    Dijkman, R., Rosa, M.L., Reijers, H.A.: Managing large collections of business process models - Current techniques and challenges. Comp. in Industry 63(2), 91–97 (2012)CrossRefGoogle Scholar
  10. 10.
    Dong, J., Zhao, Y., Peng, T.: A review of design pattern mining techniques. International Journal of Software Engineering and Knowledge Engineering 19(6), 823–855 (2009)CrossRefGoogle Scholar
  11. 11.
    Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A., Skripin, D., Bader, G.D., Shasha, D.: NetMatch: a Cytoscape plugin for searching biological networks. Bioinformatics 23(7), 910–912 (2007)CrossRefGoogle Scholar
  12. 12.
    García-Bañuelos, L.: Pattern Identification and Classification in the Translation from BPMN to BPEL. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 436–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  14. 14.
    Gupta, M., Rao, R.S., Pande, A., Tripathi, A.K.: Design Pattern Mining Using State Space Representation of Graph Matching. In: Meghanathan, N., Kaushik, B.K., Nagamalai, D. (eds.) CCSIT 2011, Part I. CCIS, vol. 131, pp. 318–328. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Jin, T., Wang, J., Wu, N., La Rosa, M., ter Hofstede, A.H.M.: Efficient and Accurate Retrieval of Business Process Models through Indexing. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 402–409. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Keller, G., Teufel, T.: SAP R/3 process-oriented implementation: Iterative process prototyping. Addison Wesley Longman, Harlow (1998)Google Scholar
  17. 17.
    Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Lucrédio, D., de M. Fortes, R.P., Whittle, J.: MOOGLE: A Model Search Engine. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 296–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neumann, G.: Detection and Prediction of Errors in EPCs of the SAP reference model. Data & Knowledge Engineering 64(1), 312–329 (2008)CrossRefGoogle Scholar
  20. 20.
    Momotko, M., Subieta, K.: Process Query Language: A Way to Make Workflow Processes More Flexible. In: Benczúr, A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 306–321. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Nijssen, S., Kok, J.N.: Frequent graph mining and its application to molecular databases. In: Conf. on System, Man and Cybernetics, pp. 4571–4577. IEEE Press, New York (2004)Google Scholar
  22. 22.
    Nijssen, S., Kok, J.N.: Frequent Subgraph Miners: Runtimes Don’t Say Everything. In: Proc. of the Int. Works. on Mining and Learning with Graphs, pp. 173–180, Berlin (2006) Google Scholar
  23. 23.
    Object Management Group: Common Warehouse Metamodel 1.1 (2011), http://www.omg.org/spec/CWM/1.1/
  24. 24.
    Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-based Translation of BPMN Process Models to BPEL Web Services. International Journal of Web Services Research 5(1), 1–21 (2007)Google Scholar
  25. 25.
    Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modularizations of process models to enhance their comprehension. Information Systems Journal 36(5), 881–897 (2011)CrossRefGoogle Scholar
  26. 26.
    Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action Patterns in Business Process Models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Uba, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Clone Detection in Repositories of Business Process Models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. J. of ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural Patterns for Soundness of Business Process Models. In: 10th IEEE Int. Enterprise Distributed Object Computing Conference, pp. 116–128. IEEE Press, New York (2006)Google Scholar
  30. 30.
    Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.: Quality metrics for business process models. In: BPM and Workflow Handbook, pp. 179–190 (2007)Google Scholar
  31. 31.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process Compliance Measurement Based on Behavioural Profiles. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 499–514. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Winkelmann, A., Weiß, B.: Automatic identification of structural process weaknesses in flow chart diagrams. Business Process Management Journal 17(5), 787–807 (2011)CrossRefGoogle Scholar
  33. 33.
    Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 392–403. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proc. of the IEEE Int. Conf. on Data Mining, pp. 721–724. IEEE Press, New York (2002)Google Scholar
  35. 35.
    Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörg Becker
    • 1
  • Dominic Breuker
    • 1
  • Patrick Delfmann
    • 1
  • Hanns-Alexander Dietrich
    • 1
  • Matthias Steinhorst
    • 1
  1. 1.WWU Muenster - ERCISMuensterGermany

Personalised recommendations