Event-Driven Scientific Workflow Execution

  • Zhili Zhao
  • Adrian Paschke
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 132)

Abstract

Scientific workflows streamline large-scale, complex scientific processes and enable different parts of a process to be systematically and efficiently executed on distributed resources. In this paper, we propose an event-driven framework for scientific workflows, which goes beyond the typical paradigm of global ECA (Event-Condition-Action) rules and executes scientific processes in terms of event message-driven conversations between rule agents. The behavioral reaction logic implemented by messaging reaction rules in combination with derivation rules used to represent complicated scientific conditional logic provides a highly expressive, scalable and flexible way to define complex scientific workflow patterns. Finally, a prototype system based on a Web rule engine Prova and a tool for rule-based collaboration Rule Responder is demonstrated.

Keywords

Reaction rules Derivation Rules Scientific Workflows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matskanis, N., Surridge, M., Silvestri, F., Cantalupo, B., Giammarino, L.: Semantic Workflow Representation and Samples. Technical report, University of Southampton IT Innovation Centre (2005)Google Scholar
  2. 2.
    Boley, H., Paschke, A.: Rule Responder Agents Framework and Instantiations. In: Elçi, A., Koné, M.T., Orgun, M.A. (eds.) Semantic Agent Systems. SCI, vol. 344, pp. 3–23. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Li, M., Cao, J.: A Rule-Based Workflow Approach for Service Composition. In: Pan, Y., Chen, D., Guo, M., Cao, J., Dongarra, J. (eds.) ISPA 2005. LNCS, vol. 3758, pp. 1036–1046. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Frincu, M., Craciun, C.: Dynamic and Adaptive Rule-Based Workflow Engine for Scientific Problems in Distributed Environments, ch. 10, pp. 227–251. CRC Press (2010)Google Scholar
  5. 5.
    Kozlenkov, A.: Prova Rule Language Version 3.0 User’s Guide. Technical report (2010)Google Scholar
  6. 6.
    Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall PTR, Upper Saddle River (2000)MATHGoogle Scholar
  7. 7.
    Li, G., Muthusamy, V., Jacobsen, H.-A., Mankovski, S.: Decentralized Execution of Event-Driven Scientific Workflows. In: Proceedings of the IEEE Services Computing Workshops, SCW 2006, pp. 73–82. IEEE Computer Society, Washington, DC (2006)CrossRefGoogle Scholar
  8. 8.
    Lin, D., Sheng, H., Ishida, T.: Interorganizational Workflow Execution Based on Process Agents and ECA Rules. IEICE - Trans. Inf. Syst. E90-D(9), 1335–1342 (2007)CrossRefGoogle Scholar
  9. 9.
    Ludäscher, B., Weske, M., McPhillips, T., Bowers, S.: Scientific Workflows: Business as Usual? In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 31–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Paschke, A.: Rule Responder HCLS eScience Infrastructure. In: Proceedings of the 3rd International Conference on the Pragmatic Web: Innovating the Interactive Society, ICPW 2008, pp. 59–67. ACM, New York (2008)Google Scholar
  11. 11.
    Paschke, A., Kozlenkov, A., Boley, H.: A Homogenous Reaction Rules Language for Complex Event Processing. In: International Workshop on Event Drive Architecture for Complex Event Process (2007)Google Scholar
  12. 12.
    Paschke, A., Zhao, Z.: Process Makna - A Semantic Wiki for Scientific Workflows. In: Proceedings of the 3rd International Workshop on Semantic Web Applications and Tools for the Life Sciences (2010)Google Scholar
  13. 13.
    Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer-Verlag New York, Inc., Secaucus (2006)Google Scholar
  14. 14.
    Welsh, M., Culler, D.E., Brewer, E.A.: SEDA: An Architecture for Well-Conditioned, Scalable Internet Services. In: SOSP, pp. 230–243 (2001)Google Scholar
  15. 15.
    Yu, H., Feng, Q., Zhang, X., Huang, X., Liang, T.: An Approach for Monitoring Snow Depth Based on AMSR-E Data in The Pastoral Area of Northern Xinjiang. Acta Prataculturae Sinica, 210–216 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhili Zhao
    • 1
  • Adrian Paschke
    • 1
  1. 1.Corporate Semantic Web Work GroupInstitute of Computer Science, Freie Universität BerlinBerlinGermany

Personalised recommendations