Investigating the Impact of Media Sentiment and Investor Attention on Financial Markets

  • Michael Siering
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 135)


Media sentiment has been shown to be related to stock returns. However, one prerequisite for this influence has not been taken into account yet: the question of whether investors actually pay attention to news and the related financial instruments. Within this study, we close this research gap by examining the interplay between media sentiment and investor attention. Thereby, we find that the positive impact of media sentiment on returns is increased when investor attention is high. Furthermore, we evaluate whether these variables can be used to forecast future market movements. Although our results reveal that the obtained forecasting accuracy cannot be achieved by chance, we conclude that further information has to be included in the forecasting model to obtain satisfying results.


Media Sentiment Investor Attention Behavioral Finance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antweiler, W., Frank, M.Z.: Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards. Journal of Finance 59, 1259–1294 (2004)CrossRefGoogle Scholar
  2. 2.
    Tetlock, P.C., Saar-Tsechansky, M., Macskassy, S.: More Than Words: Quantifying Language to Measure Firms’ Fundamentals. Journal of Finance 63, 1437–1467 (2008)CrossRefGoogle Scholar
  3. 3.
    Dellavigna, S., Pollet, J.M.: Investor Inattention and Friday Earnings Announcements. Journal of Finance 64, 709–749 (2009)CrossRefGoogle Scholar
  4. 4.
    Cohen, L., Frazzini, A.: Economic Links and Predictable Returns. Journal of Finance 63, 1977–2011 (2008)CrossRefGoogle Scholar
  5. 5.
    Hirshleifer, D., Lim, S.S., Teoh, S.H.: Driven to Distraction: Extraneous Events and Underreaction to Earnings News. Journal of Finance 64, 2289–2325 (2009)CrossRefGoogle Scholar
  6. 6.
    Tetlock, P.C.: Giving Content to Investor Sentiment: The Role of Media in the Stock Market. Journal of Finance 62, 1139–1168 (2007)CrossRefGoogle Scholar
  7. 7.
    Muntermann, J., Guettler, A.: Intraday stock price effects of ad hoc disclosures: the German case. Journal of International Financial Markets, Institutions and Money 17, 1–24 (2007)CrossRefGoogle Scholar
  8. 8.
    Bollen, J., Huina, M.: Twitter Mood as a Stock Market Predictor. Computers and Operations Research 44, 91–94 (2011)Google Scholar
  9. 9.
    Shleifer, A., Summers, L.H.: The Noise Trader Approach to Finance. Journal of Economic Perspectives 4, 19–33 (1990)CrossRefGoogle Scholar
  10. 10.
    Black, F.: Noise. Journal of Finance 41, 529–543 (1986)CrossRefGoogle Scholar
  11. 11.
    Shleifer, A.: Inefficient markets. An introduction to behavioral finance. Oxford Univ. Press, Oxford (2000)CrossRefGoogle Scholar
  12. 12.
    de Bondt, W.F.M.: A portrait of the individual investor. European Economic Review 42, 831–844 (1998)CrossRefGoogle Scholar
  13. 13.
    Brown, G.W., Cliff, M.T.: Investor sentiment and the near-term stock market. Journal of Empirical Finance 11, 1–27 (2004)CrossRefGoogle Scholar
  14. 14.
    Shiller, R.J.: Stock Prices and Social Dynamics. Brookings Papers on Economic Activity 1984, 457–510 (1984)Google Scholar
  15. 15.
    Loughran, T., McDonald, B.: When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. Journal of Finance 66, 35–65 (2011)Google Scholar
  16. 16.
    Das, S.R., Chen, M.Y.: Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web. Management Science 53, 1375–1388 (2007)CrossRefGoogle Scholar
  17. 17.
    Bollen, J., Mao, H., Zeng, X.-J.: Twitter mood predicts the stock market. Journal of Computational Science 2, 1–8 (2011)CrossRefGoogle Scholar
  18. 18.
    Lou, D.: Attracting investor attention through advertising. Discussion Paper 644. Financial Markets Group, London School of Economics and Political Science, London (2009) Google Scholar
  19. 19.
    Barber, B.M., Odean, T.: All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors. Review of Financial Studies 21, 785–818 (2008)CrossRefGoogle Scholar
  20. 20.
    Busse, J.A., Green, T.C.: Market efficiency in real time. Journal of Financial Economics 65, 415–437 (2002)CrossRefGoogle Scholar
  21. 21.
    Chemmanur, T.J., Yan, A.: Advertising, Attention, and Stock Returns. Working Paper (2009),
  22. 22.
    Louis, H., Sun, A.: Investor Inattention and the Market Reaction to Merger Announcements. Management Science 56, 1781–1793 (2010)CrossRefGoogle Scholar
  23. 23.
    Da, Z., Engelberg, J., Gao, P.: In Search of Attention. Journal of Finance 66, 1461–1499 (2011)CrossRefGoogle Scholar
  24. 24.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine Learning Techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Philadelphia, Pennsylvania, pp. 79–86 (2002)Google Scholar
  25. 25.
    Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2, 1–135 (2008)CrossRefGoogle Scholar
  26. 26.
    Zhou, L., Chaovalit, P.: Ontology-supported polarity mining. Journal of the American Society for Information Science and Technology 59, 98–110 (2008)CrossRefGoogle Scholar
  27. 27.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in Twitter events. Journal of the American Society for Information Science and Technology 62, 406–418 (2011)CrossRefGoogle Scholar
  28. 28.
    Zhang, W., Skiena, S.: Trading Strategies To Exploit Blog and News Sentiment. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, Washington, DC (2010)Google Scholar
  29. 29.
    Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009)CrossRefGoogle Scholar
  30. 30.
    Penman, S.H.: The distribution of earnings news over time and seasonalities in aggregate stock returns. Journal of Financial Economics 18, 199–228 (1987)CrossRefGoogle Scholar
  31. 31.
    Patell, J.M., Wolfson, M.A.: The intraday speed of adjustment of stock prices to earnings and dividend announcements. Journal of Financial Economics 13, 223–252 (1984)CrossRefGoogle Scholar
  32. 32.
    Campbell, J.Y., Grossman, S.J., Wang, J.: Trading Volume and Serial Correlation in Stock Returns. Quarterly Journal of Economics 108, 905–939 (1993)CrossRefGoogle Scholar
  33. 33.
    Newey, W.K., West, K.D.: A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55, 703–708 (1987)CrossRefGoogle Scholar
  34. 34.
    O’Brien, R.M.: A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity 41, 673–690 (2007)CrossRefGoogle Scholar
  35. 35.
    Mitchell, T.: Machine learning. McGraw-Hill, London (1997)Google Scholar
  36. 36.
    Dhar, V., Stein, R.: Intelligent decision support methods. The science of knowledge work. Prentice Hall, Upper Saddle River (1997)Google Scholar
  37. 37.
    Groth, S.S., Muntermann, J.: Supporting Investment Management Processes with Machine Learning Techniques. In: Proceedings of the 9th Internationale Tagung Wirtschaftsinformatik, Vienna, vol. 2, pp. 275–284 (2009)Google Scholar
  38. 38.
    Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29, 309–317 (2001)CrossRefGoogle Scholar
  39. 39.
    Chau, M., Chen, H.: A machine learning approach to web page filtering using content and structure analysis. Decision Support Systems 44, 482–494 (2008)CrossRefGoogle Scholar
  40. 40.
    Hotho, A., Nürnberger, A., Paaß, G.: A Brief Survey of Text Mining. GLDV Journal for Computational Linguistics 20, 19–62 (2005)Google Scholar
  41. 41.
    van Rijsbergen, C.J.: Information retrieval. Butterworths, London (1979)Google Scholar
  42. 42.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. National Taiwan University (2003),
  43. 43.
    Mittermayer, M.-A.: Forecasting Intraday Stock Price Trends with Text Mining Techniques. In: Proceedings of the 37th Hawaii International Conference on System Sciences, Big Island, Hawaii (2004)Google Scholar
  44. 44.
    Lam, M.: Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Data mining for financial decision making. Decision Support Systems 37, 567–581 (2004)CrossRefGoogle Scholar
  45. 45.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the Dynamics of the News Cycle. In: Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining, Paris (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Siering
    • 1
  1. 1.Goethe University FrankfurtFrankfurtGermany

Personalised recommendations