Designated Attribute-Based Proofs for RFID Applications

  • Gergely Alpár
  • Lejla Batina
  • Wouter Lueks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7739)


Recent research has shown that using public-key cryptography in order to meet privacy requirements for RFID tags is not only necessary, but also now practically feasible. This has led to the development of new protocols like the Randomized Schnorr [6] identification protocol. This protocol ensures that the identity of a tag only becomes known to authorised readers.

In this paper we generalize this protocol by introducing an attribute-based identification scheme. The proposed scheme preserves the designation of verification (i.e., only an authorised reader is able to learn the identity of a tag) while it allows tags to prove any subset of their attributes to authorised readers. The proposed scheme is proven to be secure and narrow-strong private.


RFID identification authentication elliptic curve cryptography security privacy attribute-based credential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batina, L., Lee, Y.K., Seys, S., Singelée, D., Verbauwhede, I.: Privacy-Preserving ECC-Based Grouping Proofs for RFID. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 159–165. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Batina, L., Lee, Y.K., Seys, S., Singelée, D., Verbauwhede, I.: Extending ECC-based RFID authentication protocols to privacy-preserving multi-party grouping proofs. Personal and Ubiquitous Computing 16(3), 323–335 (2012)CrossRefGoogle Scholar
  3. 3.
    Batina, L., Seys, S., Singelée, D., Verbauwhede, I.: Hierarchical ECC-Based RFID Authentication Protocol. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 183–201. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Braun, M., Hess, E., Meyer, B.: Using Elliptic Curves on RFID Tags. IJCSNS International Journal of Computer Science and Network Security 8(2), 1–9 (2008)Google Scholar
  6. 6.
    Bringer, J., Chabanne, H., Icart, T.: Cryptanalysis of EC-RAC, a RFID Identification Protocol. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 149–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K., Harald, Z.: D2.1 Architecture for Attribute-based Credential Technologies. Deliverable, ABC4Trust EU Project (December 2011)Google Scholar
  8. 8.
    Chaum, D.: Zero-Knowledge Undeniable Signatures (extended abstract). In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Fan, J., Knezevic, M., Karaklajic, D., Maes, R., Rozic, V., Batina, L., Verbauwhede, I.: FPGA-based testing strategy for cryptographic chips: A case study on Elliptic Curve Processor for RFID tags. In: 15th IEEE International On-Line Testing Symposium (IOLTS 2009), Sesimbra-Lisbon, Portugal, June 24-26, pp. 189–191. IEEE (2009)Google Scholar
  11. 11.
    Hein, D., Wolkerstorfer, J., Felber, N.: ECC Is Ready for RFID – A Proof in Silicon. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Juels, A.: “Yoking-Proofs” for RFID Tags. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW 2004), pp. 138–143. IEEE Computer Society (2004)Google Scholar
  14. 14.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lee, Y.K., Batina, L., Singelée, D., Verbauwhede, I.: Low-Cost Untraceable Authentication Protocols for RFID. In: Proceedings of the Third ACM Conference on Wireless Network Security, WiSec 2010, pp. 55–64. ACM, New York (2010)Google Scholar
  16. 16.
    Paquin, C.: U-Prove Cryptographic Specification V1.1. Technical report, Microsoft (2011)Google Scholar
  17. 17.
    Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 40–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  19. 19.
    Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gergely Alpár
    • 1
    • 2
  • Lejla Batina
    • 1
    • 3
  • Wouter Lueks
    • 1
    • 2
  1. 1.ICIS/Digital Security groupRadboud University NijmegenNijmegenThe Netherlands
  2. 2.TNO Information and Communication TechnologyThe Netherlands
  3. 3.ESAT/SCD-COSIC and IBBTK.U. LeuvenLeuven-HeverleeBelgium

Personalised recommendations