Advertisement

Solving BDD by Enumeration: An Update

  • Mingjie Liu
  • Phong Q. Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7779)

Abstract

Bounded Distance Decoding (BDD) is a basic lattice problem used in cryptanalysis: the security of most lattice-based encryption schemes relies on the hardness of some BDD, such as LWE. We study how to solve BDD using a classical method for finding shortest vectors in lattices: enumeration with pruning speedup, such as Gama-Nguyen-Regev extreme pruning from EUROCRYPT ’10. We obtain significant improvements upon Lindner-Peikert’s Search-LWE algorithm (from CT-RSA ’11), and update experimental cryptanalytic results, such as attacks on DSA with partially known nonces and GGH encryption challenges. Our work shows that any security estimate of BDD-based cryptosystems must take into account enumeration attacks, and that BDD enumeration can be practical even in high dimension like 350.

Keywords

Success Probability Lattice Vector Error Vector Plane Algorithm Lattice Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)Google Scholar
  2. 2.
    Babai, L.: On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem (Shortened Version). In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  3. 3.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Gama, N., Nguyen, P.Q., Regev, O.: Lattice Enumeration Using Extreme Pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  8. 8.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proc.STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  9. 9.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Regev, O.: Lattice-Based Cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    National Institute of Standards and Technology (NIST). Fips publication 186:digital signature standard (1994)Google Scholar
  13. 13.
    Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryptography. Contemporary Mathematics, vol. 477, AMS–RSME (2009)Google Scholar
  15. 15.
    Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15(3), 151–176 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proc. STOC 2009, pp. 333–342. ACM (2009)Google Scholar
  17. 17.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  18. 18.
    Regev, O.: The learning with errors problem (invited survey). In: Proc. IEEE Conference on Computational Complexity, pp. 191–204 (2010)Google Scholar
  19. 19.
    Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181–199 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mingjie Liu
    • 1
    • 2
  • Phong Q. Nguyen
    • 3
  1. 1.Beijing International Center for Mathematical ResearchPeking UniversityChina
  2. 2.Institute for Advanced StudyTsinghua UniversityChina
  3. 3.Institute for Advanced StudyINRIA, France and Tsinghua UniversityChina

Personalised recommendations