Functional DNA-Integrated Nanomaterials for Biosensing

Chapter

Abstract

This chapter reviews recent progress in the development of biosensors by integrating functional DNA molecules with nanoscale science and technology. Functional DNA, a new class of DNA with functions beyond genetic information storage, can either bind to a target molecule (known as aptamers) or perform catalytic reactions (called DNAzymes). The targets of functional DNA can range from metal ions and small organic molecules to proteins, and even cells, making them a general platform for recognizing a broad range of targets. On the other hand, recent progress in nanoscale science and technology has resulted in a number of nanomaterials with interesting optical, electrical, magnetic, and catalytic properties. Inspired by functional DNA biology and nanotechnology, various methods have been developed to integrate functional DNA with these nanomaterials, such as gold nanoparticles, fluorescent nanoparticles, superparamagnetic iron oxide nanoparticles, and graphene, for designing a variety of fluorescent, colorimetric, surface-enhanced Raman scattering, and magnetic resonance imaging sensors for the detection of a broad range of analytes.

Keywords

Biosensor DNA Aptamer DNAzyme Nanomaterials 

Notes

Acknowledgments

The research of the Lu group described in this chapter has been generously supported by the US National Institutes of Health, Department of Energy, Department of Defense, Department of Housing and Urban Development, Environmental Protection Agency, National Science Foundation, and the Illinois Sustainable Technology Center.

References

  1. 1.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. 2.
    Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2007) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90CrossRefGoogle Scholar
  3. 3.
    Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640CrossRefGoogle Scholar
  4. 4.
    Cao YWC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRefGoogle Scholar
  5. 5.
    Lim SI, Zhong CJ (2009) Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. Acc Chem Res 42:798–808CrossRefGoogle Scholar
  6. 6.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998CrossRefGoogle Scholar
  7. 7.
    Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862CrossRefGoogle Scholar
  8. 8.
    Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468CrossRefGoogle Scholar
  9. 9.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  10. 10.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  11. 11.
    Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229CrossRefGoogle Scholar
  12. 12.
    Breaker RR (1997) DNA enzymes. Nat Biotechnol 15:427–431CrossRefGoogle Scholar
  13. 13.
    Silverman SK (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33:6151–6163CrossRefGoogle Scholar
  14. 14.
    Robertson MP, Ellington AD (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol 17:62–66CrossRefGoogle Scholar
  15. 15.
    Bunka DHJ, Stockley PG (2006) Aptamers come of age – at last. Nat Rev Microbiol 4:588–596CrossRefGoogle Scholar
  16. 16.
    O’Sullivan CK (2002) Aptasensors – the future of biosensing? Anal Bioanal Chem 372:44–48CrossRefGoogle Scholar
  17. 17.
    Lu Y, Liu J (2007) Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323CrossRefGoogle Scholar
  18. 18.
    Lu Y (2002) New transition-metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chem Eur J 8:4588–4596CrossRefGoogle Scholar
  19. 19.
    Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588CrossRefGoogle Scholar
  20. 20.
    Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281CrossRefGoogle Scholar
  21. 21.
    Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641CrossRefGoogle Scholar
  22. 22.
    Guo S, Wang E (2011) Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery. Acc Chem Res 44:491–500CrossRefGoogle Scholar
  23. 23.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  24. 24.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  25. 25.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  26. 26.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650CrossRefGoogle Scholar
  27. 27.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  28. 28.
    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefGoogle Scholar
  29. 29.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  30. 30.
    Reynolds RA, Mirkin CA, Letsinger RL (2000) Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J Am Chem Soc 122:3795–3796CrossRefGoogle Scholar
  31. 31.
    Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies. J Am Chem Soc 125:1643–1654CrossRefGoogle Scholar
  32. 32.
    Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643CrossRefGoogle Scholar
  33. 33.
    Liu J, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126:12298–12305CrossRefGoogle Scholar
  34. 34.
    Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683CrossRefGoogle Scholar
  35. 35.
    Liu J, Lu Y (2006) Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem 4:3435–3441CrossRefGoogle Scholar
  36. 36.
    Liu J, Lu Y (2007) Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem Commun 46:4872–4874CrossRefGoogle Scholar
  37. 37.
    Li H, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961CrossRefGoogle Scholar
  38. 38.
    Li H, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76:5414–5417CrossRefGoogle Scholar
  39. 39.
    Li H, Rothberg LJ (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem 77:6229–6233CrossRefGoogle Scholar
  40. 40.
    Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226CrossRefGoogle Scholar
  41. 41.
    Wang Z, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 17:3263–3267CrossRefGoogle Scholar
  42. 42.
    Wei H, Li B, Li J, Dong S, Wang E (2008) DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology 19:095501CrossRefGoogle Scholar
  43. 43.
    Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096CrossRefGoogle Scholar
  44. 44.
    Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245CrossRefGoogle Scholar
  45. 45.
    Torabi SF, Lu Y (2011) Small-molecule diagnostics based on functional DNA nanotechnology: a dipstick test for mercury. Faraday Discuss 149:125–135CrossRefGoogle Scholar
  46. 46.
    Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 47:3927–3931CrossRefGoogle Scholar
  47. 47.
    Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun: 2242–2244Google Scholar
  48. 48.
    Wang L, Zhang J, Wang X, Huang Q, Pan D, Song S, Fan C (2008) Gold nanoparticle based optical probes for target-responsive DNA structures. Gold Bull 41:37–41CrossRefGoogle Scholar
  49. 49.
    Liu J, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94CrossRefGoogle Scholar
  50. 50.
    Liu J, Lu Y (2006) Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv Mater 18:1667–1671CrossRefGoogle Scholar
  51. 51.
    Zhao W, Chiuman W, Brook MA, Li Y (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chembiochem 8:727–731CrossRefGoogle Scholar
  52. 52.
    Zhao W, Chiuman W, Lam JC, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130:3610–3618CrossRefGoogle Scholar
  53. 53.
    Chen SJ, Huang YF, Huang CC, Lee KH, Lin ZH, Chang HT (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23:1749–1753CrossRefGoogle Scholar
  54. 54.
    Huang C, Huang Y, Cao Z, Tan W, Chang H (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741CrossRefGoogle Scholar
  55. 55.
    Wang Y, Li D, Ren W, Liu Z, Dong S, Wang E (2008) Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem Commun: 2520–2522Google Scholar
  56. 56.
    Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun: 3735–3737Google Scholar
  57. 57.
    Wang L, Liu X, Hu X, Song S, Fan C (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun: 3780–3782Google Scholar
  58. 58.
    Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946CrossRefGoogle Scholar
  59. 59.
    Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4:1196–1200CrossRefGoogle Scholar
  60. 60.
    Chan CP, Cheung YC, Renneberg R, Seydack M (2008) New trends in immunoassays. Adv Biochem Eng Biotechnol 109:123–154Google Scholar
  61. 61.
    Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 75:4155–4160CrossRefGoogle Scholar
  62. 62.
    Liu J, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed 45:7955–7959CrossRefGoogle Scholar
  63. 63.
    Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80:8431–8437CrossRefGoogle Scholar
  64. 64.
    Mazumdar D, Liu J, Lu G, Zhou J, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46:1416–1418CrossRefGoogle Scholar
  65. 65.
    Das PC, Puri A (2002) Energy flow and fluorescence near a small metal particle. Phys Rev B 65:155416CrossRefGoogle Scholar
  66. 66.
    Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci USA 100:6297–6301CrossRefGoogle Scholar
  67. 67.
    Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127:3115–3119CrossRefGoogle Scholar
  68. 68.
    Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FC, Reinhoudt DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002CrossRefGoogle Scholar
  69. 69.
    Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370CrossRefGoogle Scholar
  70. 70.
    Wang W, Chen C, Qian M, Zhao X (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373:213–219CrossRefGoogle Scholar
  71. 71.
    Huang CC, Chiu SH, Huang YF, Chang HT (2007) Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal Chem 79:4798–4804CrossRefGoogle Scholar
  72. 72.
    Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261CrossRefGoogle Scholar
  73. 73.
    Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6:201–204CrossRefGoogle Scholar
  74. 74.
    Song S, Liang Z, Zhang J, Wang L, Li G, Fan C (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 48:8670–8674CrossRefGoogle Scholar
  75. 75.
    Huang Y, Zhao S, Liang H, Chen Z, Liu Y (2011) Multiplex detection of endonucleases by using a multicolor gold nanobeacon. Chem Eur J 17:7313–7319CrossRefGoogle Scholar
  76. 76.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  77. 77.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  78. 78.
    Futamata M, Maruyama Y, Ishikawa M (2003) Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Phys Chem B 107:7607–7617CrossRefGoogle Scholar
  79. 79.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975CrossRefGoogle Scholar
  80. 80.
    Bell SEJ, Sirimuthu NMS (2006) Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc 128:15580–15581CrossRefGoogle Scholar
  81. 81.
    Barhoumi A, Zhang D, Tam F, Halas NJ (2008) Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 130:5523–5529CrossRefGoogle Scholar
  82. 82.
    Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed 47:1658–1661CrossRefGoogle Scholar
  83. 83.
    Qian XM, Zhou X, Nie S (2008) Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc 130:14934–14935CrossRefGoogle Scholar
  84. 84.
    Faulds K, Smith WE, Graham D (2004) Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal Chem 76:412–417CrossRefGoogle Scholar
  85. 85.
    Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67CrossRefGoogle Scholar
  86. 86.
    Wang Y, Wei H, Li B, Ren W, Guo S, Dong S, Wang E (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun: 5220–5222Google Scholar
  87. 87.
    Wang Y, Lee K, Irudayaraj J (2010) SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun 46:613–615CrossRefGoogle Scholar
  88. 88.
    Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R (2008) A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chem Eur J 14:8374–8382CrossRefGoogle Scholar
  89. 89.
    Chen JW, Liu XP, Feng KJ, Liang Y, Jiang JH, Shen GL, Yu RQ (2008) Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens Bioelectron 24:66–71CrossRefGoogle Scholar
  90. 90.
    Li M, Zhang J, Suri S, Sooter LJ, Ma D, Wu N (2012) Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Anal Chem 84:2837–2842CrossRefGoogle Scholar
  91. 91.
    Wang Y, Irudayaraj J (2011) A SERS DNAzyme biosensor for lead ion detection. Chem Commun 47:4394–4396CrossRefGoogle Scholar
  92. 92.
    Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122:10466–10467CrossRefGoogle Scholar
  93. 93.
    Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104:2056–2061CrossRefGoogle Scholar
  94. 94.
    Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46:7587–7590CrossRefGoogle Scholar
  95. 95.
    Liu J, Lu Y (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129:9838–9839CrossRefGoogle Scholar
  96. 96.
    Zhang X, Wang Z, Xing H, Xiang Y, Lu Y (2010) Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal Chem 82:5005–5011CrossRefGoogle Scholar
  97. 97.
    Xu W, Lu Y (2010) Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem 82:574–578CrossRefGoogle Scholar
  98. 98.
    Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 131:15352–15357CrossRefGoogle Scholar
  99. 99.
    Huang CC, Chang HT (2008) Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem Commun: 1461–1463Google Scholar
  100. 100.
    Nutiu R, Li Y (2005) A DNA-protein nanoengine for “on-demand” release and precise delivery of molecules. Angew Chem Int Ed 44:5464–5467CrossRefGoogle Scholar
  101. 101.
    Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778CrossRefGoogle Scholar
  102. 102.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  103. 103.
    Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72CrossRefGoogle Scholar
  104. 104.
    Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638CrossRefGoogle Scholar
  105. 105.
    Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589CrossRefGoogle Scholar
  106. 106.
    Shi LF, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128:10378–10379CrossRefGoogle Scholar
  107. 107.
    Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831CrossRefGoogle Scholar
  108. 108.
    Peng H, Zhang L, Kjallman THM, Soeller C, Travas-Sejdic J (2007) DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. J Am Chem Soc 129:3048–3049CrossRefGoogle Scholar
  109. 109.
    Yuan J, Guo W, Yang X, Wang E (2009) Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. Anal Chem 81:362–368CrossRefGoogle Scholar
  110. 110.
    Levy M, Cater SF, Ellington AD (2005) Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6:2163–2166CrossRefGoogle Scholar
  111. 111.
    Choi JH, Chen KH, Strano MS (2006) Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J Am Chem Soc 128:15584–15585CrossRefGoogle Scholar
  112. 112.
    Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125CrossRefGoogle Scholar
  113. 113.
    Wu CS, Oo MKK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4:5897–5904CrossRefGoogle Scholar
  114. 114.
    Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989CrossRefGoogle Scholar
  115. 115.
    Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829CrossRefGoogle Scholar
  116. 116.
    Auzel F (2003) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174CrossRefGoogle Scholar
  117. 117.
    Feng W, Sun L, Zhang Y, Yan C (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coord Chem Rev 254:1038–1053CrossRefGoogle Scholar
  118. 118.
    Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44:322–332CrossRefGoogle Scholar
  119. 119.
    Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14:582–596CrossRefGoogle Scholar
  120. 120.
    Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065CrossRefGoogle Scholar
  121. 121.
    Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10:968–973CrossRefGoogle Scholar
  122. 122.
    Li LL, Zhang R, Yin L, Zheng K, Qin W, Selvin PR, Lu Y (2012) Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed 51:6121–6125CrossRefGoogle Scholar
  123. 123.
    Wang M, Hou W, Mi CC, Wang WX, Xu ZR, Teng HH, Mao CB, Xu SK (2009) Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Anal Chem 81:8783–8789CrossRefGoogle Scholar
  124. 124.
    Rantanen T, Järvenpää ML, Vuojola J, Kuningas K, Soukka T (2008) Fluorescence-quenching-based enzyme-activity assay by using photon upconversion. Angew Chem Int Ed 47:3811–3813CrossRefGoogle Scholar
  125. 125.
    Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130:3023–3029CrossRefGoogle Scholar
  126. 126.
    Zhang P, Rogelj S, Nguyen K, Wheeler D (2006) Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc 128:12410–12411CrossRefGoogle Scholar
  127. 127.
    Liu Q, Peng J, Sun L, Li F (2011) High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 5:8040–8048CrossRefGoogle Scholar
  128. 128.
    Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47:4661–4663CrossRefGoogle Scholar
  129. 129.
    Wang Y, Bao L, Liu Z, Pang D (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83:8130–8137CrossRefGoogle Scholar
  130. 130.
    Song K, Kong X, Liu X, Zhang Y, Zeng Q, Tu L, Shi Z, Zhang H (2012) Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Chem Commun 48:1156–1158CrossRefGoogle Scholar
  131. 131.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148CrossRefGoogle Scholar
  132. 132.
    Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499CrossRefGoogle Scholar
  133. 133.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499CrossRefGoogle Scholar
  134. 134.
    Lee J, Zylka MJ, Anderson DJ, Burdette JE, Woodruff TK, Meade TJ (2005) A steroid-conjugated contrast agent for magnetic resonance imaging of cell signaling. J Am Chem Soc 127:13164–13166CrossRefGoogle Scholar
  135. 135.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  136. 136.
    Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T (2004) Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 212:167–175CrossRefGoogle Scholar
  137. 137.
    Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858–8864CrossRefGoogle Scholar
  138. 138.
    Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820Google Scholar
  139. 139.
    Josephson L, Perez JM, Weissleder R (2001) Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chem Int Ed 40:3204–3206CrossRefGoogle Scholar
  140. 140.
    Zhao M, Josephson L, Tang Y, Weissleder R (2003) Magnetic sensors for protease assays. Angew Chem Int Ed 42:1375–1378CrossRefGoogle Scholar
  141. 141.
    Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380–383CrossRefGoogle Scholar
  142. 142.
    Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193CrossRefGoogle Scholar
  143. 143.
    Tsourkas A, Hofstetter O, Hofstetter H, Weissleder R, Josephson L (2004) Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew Chem Int Ed 43:2395–2399CrossRefGoogle Scholar
  144. 144.
    Yigit MV, Mazumdar D, Kim HK, Lee JH, Dintsov B, Lu Y (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678CrossRefGoogle Scholar
  145. 145.
    Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417CrossRefGoogle Scholar
  146. 146.
    Bamrungsap S, Shukoor MI, Chen T, Sefah K, Tan W (2011) Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal Chem 83:7795–7799CrossRefGoogle Scholar
  147. 147.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  148. 148.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  149. 149.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  150. 150.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777CrossRefGoogle Scholar
  151. 151.
    Yang WR, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138CrossRefGoogle Scholar
  152. 152.
    Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  153. 153.
    Wang Y, Li ZH, Wang J, Li JH, Lin YH (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212CrossRefGoogle Scholar
  154. 154.
    Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132:17408–17410CrossRefGoogle Scholar
  155. 155.
    Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877CrossRefGoogle Scholar
  156. 156.
    Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212CrossRefGoogle Scholar
  157. 157.
    Li JL, Bao HC, Hou XL, Sun L, Wang XG, Gu M (2012) Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy. Angew Chem Int Ed 51:1830–1834CrossRefGoogle Scholar
  158. 158.
    Swathi RS, Sebastiana KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129:054703CrossRefGoogle Scholar
  159. 159.
    Swathi RS, Sebastiana KL (2009) Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence. J Chem Phys 130:086101CrossRefGoogle Scholar
  160. 160.
    Husale BS, Sahoo S, Radenovic A, Traversi F, Annibale P, Kis A (2010) ssDNA binding reveals the atomic structure of graphene. Langmuir 26:18078–18082CrossRefGoogle Scholar
  161. 161.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787CrossRefGoogle Scholar
  162. 162.
    Dong HF, Gao WC, Yan F, Ji HX, Ju HX (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517CrossRefGoogle Scholar
  163. 163.
    Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang LH, Song S, Fan C (2010) A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2:1021–1026CrossRefGoogle Scholar
  164. 164.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613CrossRefGoogle Scholar
  165. 165.
    Huang PJJ, Liu J (2012) DNA-length-dependent fluorescence signaling on graphene oxide surface. Small 8:977–983CrossRefGoogle Scholar
  166. 166.
    Wu W, Hu H, Li F, Wang L, Gao J, Lu J, Fan C (2011) A graphene oxide-based nano-beacon for DNA phosphorylation analysis. Chem Commun 47:1201–1203CrossRefGoogle Scholar
  167. 167.
    Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596–2598CrossRefGoogle Scholar
  168. 168.
    He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459CrossRefGoogle Scholar
  169. 169.
    Lin L, Liu Y, Zhao X, Li J (2011) Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform. Anal Chem 83:8396–8402CrossRefGoogle Scholar
  170. 170.
    Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130:8351–8358CrossRefGoogle Scholar
  171. 171.
    Zhen SJ, Chen LQ, Xiao SJ, Li YF, Hu PP, Zhan L, Peng L, Song EQ, Huang CZ (2010) Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal Chem 82:8432–8437CrossRefGoogle Scholar
  172. 172.
    Chen Z, Zhang X, Yang R, Zhu Z, Chen Y, Tan W (2011) Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale 3:1949–1956CrossRefGoogle Scholar
  173. 173.
    Li H, Tian J, Wang L, Zhang Y, Sun X (2011) Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. J Mater Chem 21:824–828CrossRefGoogle Scholar
  174. 174.
    Li H, Zhang Y, Wu T, Liu S, Wang L, Sun X (2011) Carbon nanospheres for fluorescent biomolecular detection. J Mater Chem 21:4663–4668CrossRefGoogle Scholar
  175. 175.
    Li H, Zhang Y, Wang L, Tian J, Sun X (2011) Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun 47:961–963CrossRefGoogle Scholar
  176. 176.
    Li H, Zhang Y, Luo Y, Sun X (2011) Nano-C60: a novel, effective, fluorescent sensing platform for biomolecular detection. Small 7:1562–1568CrossRefGoogle Scholar
  177. 177.
    Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346CrossRefGoogle Scholar
  178. 178.
    Lu CH, Li J, Lin MH, Wang YW, Yang HH, Chen X, Chen GN (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed 49:8454–8457CrossRefGoogle Scholar
  179. 179.
    Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276CrossRefGoogle Scholar
  180. 180.
    Wen Y, Peng C, Li D, Zhuo L, He S, Wang L, Huang Q, Xu QH, Fan C (2011) Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chem Commun 47:6278–6280CrossRefGoogle Scholar
  181. 181.
    Zhao XH, Kong RM, Zhang XB, Meng HM, Liu WN, Tan W, Shen GL, Yu RQ (2011) Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal Chem 83:5062–5066CrossRefGoogle Scholar
  182. 182.
    Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476CrossRefGoogle Scholar
  183. 183.
    Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526CrossRefGoogle Scholar
  184. 184.
    Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132:18012–18013CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations