Theoretical Distributed Computing Meets Biology: A Review

  • Ofer Feinerman
  • Amos Korman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7753)


In recent years, several works have demonstrated how the study of biology can benefit from an algorithmic perspective. Since biological systems are often distributed in nature, this approach may be particularly useful in the context of distributed computing. As the study of algorithms is traditionally motivated by an engineering and technological point of view, the adaptation of ideas from theoretical distributed computing to biological systems is highly non-trivial and requires a delicate and careful treatment. In this review, we discuss some of the recent research within this framework and suggest several challenging future directions.


Mobile Agent Abstract Model Computational Thinking Population Protocol Swarm Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a Maximal Independent Set. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 32–50. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamentaldistributed computing problem. Science 331(6014), 183–185 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)CrossRefGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefGoogle Scholar
  5. 5.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science, Distributed Computing Column 93, 98–117 (2007); An updated and extended version appears in Middleware for Network Eccentric and Mobile Applications. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.): pp. 97–120. Springer (2009)Google Scholar
  6. 6.
    Bialek, W.: Physical limits to sensation and perception. Annual Review of Biophysics and Biophysical Chemistry 16, 455–478 (1987)CrossRefGoogle Scholar
  7. 7.
    Biallek, W., Cavagnab, A., Giardinab, I., Morad, T., Silvestrib, E., Vialeb, M., Walczake, A.M.: Statistical mechanics for natural flocks of birds. PNAS 109(13), 4786–4791 (2012)CrossRefGoogle Scholar
  8. 8.
    Branson, K., Robie, A.A., Bender, J., Perona, P., Dickinson, M.H.: High-throughput ethomics in large groups of Drosophila. Nature Methods 6, 451–457 (2009)CrossRefGoogle Scholar
  9. 9.
    Bruckstein, A.M.: Why the ant trails look so straight and nice. The Mathematical Intelligencer 15(2), 58–62 (1993)CrossRefGoogle Scholar
  10. 10.
    Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C.I.: Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 5, 247–254 (2010)CrossRefGoogle Scholar
  11. 11.
    de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. CRC Press (2006)Google Scholar
  12. 12.
    de Castro, L.N., Von Zuben, F.J.: Recent developments in biologically inspired computing. Idea Group Publishing (2004)Google Scholar
  13. 13.
    Chazelle, B.: Natural algorithms. In: Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 422–431 (2009)Google Scholar
  14. 14.
    Chaintreau, A., Fraigniaud, P., Lebhar, E.: Networks Become Navigable as Nodes Move and Forget. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 133–144. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Cucker, F., Smale, S.: Emergent behavior in ßocks. IEEE Trans. Automatic Control 52, 852–862 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dorigo, M., Stutzle, T.: Ant colony optimization. MIT Press (2004)Google Scholar
  17. 17.
    Dorigo, M., Sahin, E.: Swarm Robotics - Special Issue. Autonomous Robots 17, 111–113 (2004)CrossRefGoogle Scholar
  18. 18.
    Emek, Y., Smula, J., Wattenhofer, R.: Stone Age Distributed Computing. Arxiv (2012)Google Scholar
  19. 19.
    Feder, T.: Statistical physics is for the birds. Physics Today 60(10), 28–30 (2007)CrossRefGoogle Scholar
  20. 20.
    Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the Plane without Communication. In: Proc. 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 77–86 (2012)Google Scholar
  22. 22.
    Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N., Altan-Bonnet, G.: Variability and robustness in T Cell activation from regulated heterogeneity in protein levels. Science 321(5892), 1081–1084 (2008)CrossRefGoogle Scholar
  23. 23.
    Fraigniaud, P.: Small Worlds as Navigable Augmented Networks: Model, Analysis, and Validation. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 2–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Fraigniaud, P., Giakkoupis, G.: On the searchability of small-world networks with arbitrary underlying structure. In: Proc. 42th ACM Symposium on Theory of Computing (STOC), pp. 389–398 (2010)Google Scholar
  25. 25.
    Fraigniaud, P., Lebhar, E., Lotker, Z.: A Lower Bound for Network Navigability. SIAM J. Discrete Math. 24(1), 72–81 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS Computational Biology 3(10), e189 (2007)Google Scholar
  27. 27.
    Herzenberg, L.A., De Rosa, S.C.: Monoclonal antibodies and the FACS: complementary tools for immunobiology and medicine. Immunology Today 21(8), 383–390 (2000)CrossRefGoogle Scholar
  28. 28.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. PNAS 79(8), 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ishii, T., Ishii, M.: Intravital two-photon imaging: a versatile tool for dissecting the immune system. Ann. Rheum. Dis. 70, 113–115 (2011)CrossRefGoogle Scholar
  30. 30.
    Jablonka, E., Lamb, M.J.: Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press (2005)Google Scholar
  31. 31.
    Kleinberg, J.M.: Navigation in a small world. Nature 406(6798), 845 (2000)CrossRefGoogle Scholar
  32. 32.
    Kuramoto, T., Yamagishi, H.: Physiological anatomy, burst formation, and burst frequency of the cardiac ganglion of crustaceans. Physiol. Zool. 63, 102–116 (1990)Google Scholar
  33. 33.
    Olarius, S., Zomaya, A.Y.: Handbook of Bioinspired Algorithms and Applications. Chapman & Hall/CRC (2005)Google Scholar
  34. 34.
    Lachmann, M., Sella, G.: The Computationally Complete Ant Colony: Global Coordination in a System with No Hierarchy. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 784–800. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  35. 35.
    Lenzen, C., Locher, T., Wattenhofer, R.: Tight bounds for clock synchronization. J. ACM 57(2) (2010)Google Scholar
  36. 36.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)zbMATHGoogle Scholar
  37. 37.
    Mange, D., Tomassini, M.: Bio-inspired computing machines: towards novel computational architecture. Presses Polytechniques et Universitaires Romandes (1998)Google Scholar
  38. 38.
    Milgram, S.: The small-world problem. Psychol. Today 1, 61–67 (1967)Google Scholar
  39. 39.
    Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Applied Math 50, 1645–1662 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Navlakha, S., Bar-Joseph, Z.: Algorithms in nature: the convergence of systems biology and computational thinking. Nature-EMBO Molecular Systems Biology 7, 546 (2011)Google Scholar
  41. 41.
    Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: SIGGRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)Google Scholar
  42. 42.
    Robinson, E.J.H., Richardson, T.O., Sendova-Franks, A.B., Feinerman, O., Franks, N.R.: Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behavioral Ecology and Sociobiology 63(5), 627–636 (2009)CrossRefGoogle Scholar
  43. 43.
    Robinson, E.J.H., Feinerman, O., Franks, N.R.: Experience, corpulence and decision making in ant foraging. Journal of Experimental Biology 215, 2653–2659 (2012)CrossRefGoogle Scholar
  44. 44.
    Schlaepfer, M.A., Runge, M.C., Sherman, P.W.: Ecological and evolutionary traps. Trends in Ecology and Evolution 17(10), 474–480 (2002)CrossRefGoogle Scholar
  45. 45.
    Sena, G., Frentz, Z., Birnbaum, K.D., Leibler, S.: Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy. PLOS1 (2011)Google Scholar
  46. 46.
    Shiloni, A., Agmon, N., Kaminka, G.A.: Of Robot Ants and Elephants: A Computational Comparison. Theoretical Computer Science 412, 5771–5788 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Siegelmann, H.T., Sontag, E.D.: On the Computational Power of Neural Nets. Journal of Computer and System Sciences 50, 132–150 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Simeone, O., Spagnolini, U., Bar-Ness, Y., Strogatz, S.: Distributed synchronization in wireless networks. IEEE Signal Process. Mag. 25, 81–97 (2008)CrossRefGoogle Scholar
  49. 49.
    Sole, R.V., Delgado, J.: Universal Computation in Fluid Neural Networks. Complexity 2(2), 49–56 (1996)CrossRefGoogle Scholar
  50. 50.
    Paton, R.: Computing with biological metaphors. Chapman & Hall (1994)Google Scholar
  51. 51.
    Valiant, L.G.: Evolvability. J. ACM 56(1) (2009)Google Scholar
  52. 52.
    Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75, 1226–1229 (1995)CrossRefGoogle Scholar
  53. 53.
    Viventi, J., Kim, D., Vigeland, L., Frechette, E.S., Blanco, J.A., Kim, Y., Avrin, A.E., Tiruvadi, V.R., Hwang, S., Vanleer, A.C., Wulsin, D.F., Davis, K., Gelber, C.E., Palmer, L., Spiegel, J., Wu, J., Xiao, J., Huang, Y., Contreras, D., Rogers, J.A., Litt, B.: Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience 14, 1599–1605 (2011)CrossRefGoogle Scholar
  54. 54.
    Wagner, I., Bruckstein, A.: Special Issue on Ant Robotics. Annals of Mathematics and Artificial Intelligence 31(1-4) (2001)Google Scholar
  55. 55.
    Westhus, C., Kleineidam, C.J., Roces, F., Weidenmuller, A.: Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change.Animal Behavior (in press, 2012)Google Scholar
  56. 56.
    Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biololgy 16, 15–42 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ofer Feinerman
    • 1
  • Amos Korman
    • 2
  1. 1.The Weizmann Institute of ScienceIsrael
  2. 2.CNRS and University Paris DiderotFrance

Personalised recommendations