A Novel Efficient Approach for Solving the Art Gallery Problem

  • Alexander Kröller
  • Mahdi Moeini
  • Christiane Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7748)


In this paper, we consider the Art Gallery Problem (AGP) that asks for the minimum number of guards placed in a polygon to oversee the whole polygon. The AGP is known to be NP-hard even for very restricted special cases. This paper describes a primal-dual algorithm based on continuous optimization techniques for solving large-scale instances of the Art Gallery Problem. More precisely, the algorithm is a combination of methods from computational geometry, linear programming (LP), and Difference of Convex functions (DC) programming. The structure of the algorithm permits to provide lower and upper bounds on the minimum number of guards. In order to evaluate the algorithm, we measure its performance by solving some standard test instances including some non-orthogonal polygons with holes.


Art Gallery Problem Linear Programming DC Programming Duality Separation Visibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amit, Y., Mitchell, J.S.B., Packer, E.: Locating Guards for Visibility Coverage of Polygons. In: ALENEX, pp. 120–134 (2007)Google Scholar
  2. 2.
    Bottino, A., Laurentini, A.: A nearly optimal sensor placement algorithm for boundary coverage. Pattern Recognition 41(11), 3343–3355 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chvátal, V.: A Combinatorial Theorem in Plane Geometry. Journal of Combinatorial Theory (B) 18, 39–41 (1975)zbMATHCrossRefGoogle Scholar
  4. 4.
    Computational Geometry Algorithms Library,
  5. 5.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: An Exact and Efficient Algorithm for the Orthogonal Art Gallery Problem. In: SIBGRAPI 2007: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Washington, DC (2007)Google Scholar
  6. 6.
    Couto, M.C., de Souza, C.C., de Rezende, P.J.: Experimental Evaluation of an Exact Algorithm for the Orthogonal Art Gallery Problem. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: An Exact Algorithm for an Art Gallery Problem. Technical report, Institute of Computing, University of Campinas (November 2009)Google Scholar
  8. 8.
    Fisk, S.: A Short Proof of Chvátal’s Watchman Theorem. Journal of Combinatorial Theory (B) 24, 374–375 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lee, D.T., Lin, A.K.: Computational Complexity of art gallery problems. IEEE Transactions on Information Theory 32(2), 276–282 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Le Thi, H.A., Pham Dinh, T., Muu, L.D.: Exact penalty in DC programming. Vietnam Journal of Mathematics 27, 169–178 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Le Thi, H.A., Moeini, M., Pham Dinh, T.: Portfolio Selection under Downside Risk Measures and Cardinality Constraints based on DC Programming and DCA. Computational Management Science 6(4), 477–501 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Klawe, M., Kleitman, D.: Traditional art galleries require fewer watchmen. SIAM Journal on Algebraic and Discrete Methods 4(2), 194–206 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kröller, A., Baumgartner, T., Fekete, S., Schmidt, C.: Exact Solutions and Bounds for General Art Gallery Problems. To appear in Journal of Experimental AlgorithmsGoogle Scholar
  14. 14.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)zbMATHGoogle Scholar
  15. 15.
    Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications. Acta Mathematica Vietnamica. Dedicated to Professor Hoang Tuy on the Occasion of his 70th Birthday 22(1), 289–355 (1997)Google Scholar
  16. 16.
    Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM Journal on Optimization 8, 476–505 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31, 79–113 (2001)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Kröller
    • 1
  • Mahdi Moeini
    • 1
  • Christiane Schmidt
    • 1
  1. 1.IBR, Algorithms GroupBraunschweig University of TechnologyBraunschweigGermany

Personalised recommendations