Advertisement

Linear-Time Constant-Ratio Approximation Algorithm and Tight Bounds for the Contiguity of Cographs

  • Christophe Crespelle
  • Philippe Gambette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7748)

Abstract

In this paper we consider a graph parameter called contiguity which aims at encoding a graph by a linear ordering of its vertices. We prove that the contiguity of cographs is unbounded but is always dominated by O(logn), where n is the number of vertices of the graph. And we prove that this bound is tight in the sense that there exists a family of cographs on n vertices whose contiguity is Ω(logn). In addition to these results on the worst-case contiguity of cographs, we design a linear-time constant-ratio approximation algorithm for computing the contiguity of an arbitrary cograph, which constitutes our main result. As a by-product of our proofs, we obtain a min-max theorem, which is worth of interest in itself, stating equality between the rank of a tree and the minimum height its path partitions.

Keywords

Approximation Algorithm Induction Hypothesis Rooted Tree Interval Graph Neighborhood Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turan, G.: On the succinct representation of graphs. Discr. Appl. Math. 8, 289–294 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: WWW 2004, pp. 595–602. ACM (2004)Google Scholar
  3. 3.
    Boldi, P., Vigna, S.: Codes for the world wide web. Internet Mathematics 2(4), 407–429 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Crespelle, C., Gambette, P.: Efficient Neighborhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 146–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. Journal of Computational Biology 2(1), 139–152 (1995)CrossRefGoogle Scholar
  6. 6.
    Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  7. 7.
    Roberts, F.: Representations of indifference relations, Ph.D. thesis, Stanford University (1968)Google Scholar
  8. 8.
    Johnson, D., Krishnan, S., Chhugani, J., Kumar, S., Venkatasubramanian, S.: Compressing large boolean matrices using reordering techniques. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, vol. 30, pp. 13–23 (2004)Google Scholar
  9. 9.
    Wang, R., Lau, F., Zhao, Y.: Hamiltonicity of regular graphs and blocks of consecutive ones in symmetric matrices. Discr. Appl. Math. 155(17), 2312–2320 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gavoille, C., Peleg, D.: The compactness of interval routing. SIAM Journal on Discrete Mathematics 12(4), 459–473 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ehrenfeucht, D.H.A.: Learning decision trees from random examples. Information and Computation 82(3), 231–246 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gavaldà, R., Thérien, D.: Algebraic Characterizations of Small Classes of Boolean Functions. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 331–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lováz, L.: Graph minor theory. Bulletin of the American Mathematical Society 43(1), 75–86 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christophe Crespelle
    • 1
  • Philippe Gambette
    • 2
  1. 1.Université Claude Bernard Lyon 1, DNET/INRIA, LIP UMR CNRS 5668, ENS de Lyon, Université de LyonFrance
  2. 2.Université Paris-Est, LIGM UMR CNRS 8049, Université Paris-EstChamps-sur-MarneFrance

Personalised recommendations