Avoidance Trajectories Using Reachable Sets and Parametric Sensitivity Analysis

  • Matthias Gerdts
  • Ilaria Xausa
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 391)

Abstract

The article suggests a conceptual model-based simulation method with the aim to detect collision of cars in all-day road traffic. The benefit of the method within a driver assistance system would be twofold. Firstly, unavoidable accidents could be detected and appropriate actions like full braking maneuvers could be initiated in due course. Secondly, in case of an avoidable accident the algorithm is able to suggest an evasion trajectory that could be tracked by a future active steering driver assistance system. The algorithm exploits numerical optimal control techniques and reachable set analysis. A parametric sensitivity analysis is employed to investigate the influence of inaccurate sensor measurements.

Keywords

driver assistance collision avoidance optimal control reachable sets parametric sensitivity analysis 

References

  1. 1.
    Baier, R., Gerdts, M.: A computational method for non-convex reachable sets using optimal control. In: Proceedings of the European Control Conference (ECC 2009), Budapest, Hungary, August 23-26, pp. 97–102 (2009)Google Scholar
  2. 2.
    Baier, R., Gerdts, M., Xausa, I.: Approximation of Reachable Sets using Optimal Control Algorithms. Technical report (2011) (submitted)Google Scholar
  3. 3.
    Büskens, C., Maurer, H.: Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 56–68. Springer (2001)Google Scholar
  4. 4.
    Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Mathematics in Science and Engineering, vol. 165. Academic Press, New York (1983)MATHGoogle Scholar
  5. 5.
    Gerdts, M.: Solving Mixed-Integer Optimal Control Problems by Branch&Bound: A Case Study from Automobile Test-Driving with Gear Shift. Optimal Control, Applications and Methods 26(1), 1–18 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gerdts, M.: A variable time transformation method for mixed-integer optimal control problems. Optimal Control, Applications and Methods 27(3), 169–182 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gerdts, M., Karrenberg, S., Müller-Beßler, B., Stock, G.: Generating Optimal Trajectories for an Automatically Driven Car. Optimization and Engineering 10(4), 439–463 (2009)CrossRefGoogle Scholar
  8. 8.
    Gerdts, M.: OCPID-DAE1 – Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1: User’s Guide. Technical report, Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr München (2011)Google Scholar
  9. 9.
    Statistisches Bundesamt: Unfallentwicklung auf deutschen Strassen 2008, Statistisches Bundesamt, Wiesbaden (2009), http://www.destatis.de

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Matthias Gerdts
    • 1
  • Ilaria Xausa
    • 1
  1. 1.Institut für Mathematik und Rechneranwendung (LRT)Universität der BundeswehrNeubibergGermany

Personalised recommendations