Advertisement

Grover’s Algorithm with Errors

  • Andris Ambainis
  • Artūrs Bačkurs
  • Nikolajs Nahimovs
  • Alexander Rivosh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7721)

Abstract

Grover’s algorithm is a quantum search algorithm solving the unstructured search problem of size n in \(O(\sqrt{n})\) queries, while any classical algorithm needs O(n) queries [3].

However, if query has some small probability of failing (reporting that none of the elements are marked), then quantum speed-up disappears: no quantum algorithm can be faster than a classical exhaustive search by more than a constant factor [8].

We study the behaviour of Grover’s algorithm in the model there query may report some marked elements as unmarked (each marked element has its own error probability, independent of other marked elements).

We analyse the limiting behaviour of Grover’s algorithm for a large number of steps and prove the existence of limiting state ρ lim . Interestingly, the limiting state is independent of error probabilities of individual marked elements. If we measure ρ lim , the probability of getting one of the marked states i 1, …, i k is \(\frac{k}{k+1}\). We show that convergence time is O(n).

Keywords

Density Matrix Error Probability Quantum Algorithm Frobenius Norm Marked State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A.: Quantum search algorithms. SIGACT News 35(2), 22–35 (2004)CrossRefGoogle Scholar
  2. 2.
    Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust Polynomials and Quantum Algorithms. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 593–604. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM STOC, Philadelphia, Pennsylvania, pp. 212–219. ACM Press (1996)Google Scholar
  4. 4.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (2006)Google Scholar
  5. 5.
    Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: An intrinsic limitation on the size of quantum database. Physical Review A 61, 042305 (2000); Also arXiv:quant-ph/9910076CrossRefGoogle Scholar
  6. 6.
    Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Cambridge University Press (2007)Google Scholar
  7. 7.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  8. 8.
    Regev, O., Schiff, L.: Impossibility of a Quantum Speed-Up with a Faulty Oracle. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 773–781. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Shapira, D., Mozes, S., Biham, O.: The effect of unitary noise on Grover’s quantum search algorithm. Physical Review A 67, 042301 (2003); Also arXiv:quant-ph/0307142CrossRefGoogle Scholar
  10. 10.
    Shenvi, N., Brown, K.R., Whaley, K.B.: Effects of Noisy Oracle on Search Algorithm Complexity. Physical Review A 68, 052313 (2003); Also quant-ph/0304138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andris Ambainis
    • 1
  • Artūrs Bačkurs
    • 1
  • Nikolajs Nahimovs
    • 1
  • Alexander Rivosh
    • 1
  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations