Advertisement

Parameterized Algorithms for Stochastic Steiner Tree Problems

  • Denis Kurz
  • Petra Mutzel
  • Bernd Zey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7721)

Abstract

We consider the Steiner tree problem in graphs under uncertainty, the so-called two-stage stochastic Steiner tree problem (SSTP). The problem consists of two stages: In the first stage, we do not know which nodes need to be connected. Instead, we know costs at which we may buy edges, and a set of possible scenarios one of which will arise in the second stage. Each scenario consists of its own terminal set, a probability, and second-stage edge costs. We want to find a selection of first-stage edges and second-stage edges for each scenario that minimizes the expected costs and satisfies all connectivity requirements. We show that SSTP is in the class of fixed-parameter tractable problems (FPT), parameterized by the number of terminals. Additionally, we transfer our results to the directed and the prize-collecting variant of SSTP.

Keywords

Root Node Minimum Span Tree Steiner Tree Weighted Graph Steiner Tree Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Information Processing Letters 32(4), 171–176 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)zbMATHGoogle Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: Fast subset convolution. In: STOC, pp. 67–74. ACM (2007)Google Scholar
  4. 4.
    Bomze, I., Chimani, M., Jünger, M., Ljubić, I., Mutzel, P., Zey, B.: Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage Branch-and-Cut. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506, pp. 427–439. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Byrka, J., Grandoni, F., Rothvoß, T., Sanitá, L.: An improved LP-based approximation for Steiner tree. In: STOC, pp. 583–592. ACM (2010)Google Scholar
  6. 6.
    Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. In: SODA, pp. 192–200. SIAM (1998)Google Scholar
  7. 7.
    Chimani, M., Mutzel, P., Zey, B.: Improved Steiner Tree Algorithms for Bounded Treewidth. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 374–386. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)Google Scholar
  9. 9.
    Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1971)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic programming for minimum Steiner trees. Theory Computing Systems 41(3), 493–500 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gupta, A., Hajiaghayi, M.T., Kumar, A.: Stochastic Steiner Tree with Non-uniform Inflation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM 2007. LNCS, vol. 4627, pp. 134–148. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algorithms for stochastic optimization. In: STOC, pp. 417–426. ACM (2004)Google Scholar
  13. 13.
    Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp. 585–594. ACM (2003)Google Scholar
  14. 14.
    Hwang, F., Richards, D., Winter, P.: The Steiner tree problem. Annals of discrete mathematics, vol. 53. North-Holland (1992)Google Scholar
  15. 15.
    Kahng, A.B., Robins, G.: On Optimal Interconnections for VLSI. Kluwer Academic Publishers (1995)Google Scholar
  16. 16.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum (1972)Google Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitation, Universität Tübingen (2002)Google Scholar
  18. 18.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications (1998)Google Scholar
  19. 19.
    Swamy, C., Shmoys, D.B.: Approximation Algorithms for 2-Stage Stochastic Optimization Problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 5–19. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Uchoa, E., de Aragão, M.P., Ribeiro, C.C.: Preprocessing Steiner problems from VLSI layout. Networks 40(1), 38–50 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Denis Kurz
    • 1
  • Petra Mutzel
    • 1
  • Bernd Zey
    • 1
  1. 1.Department of Computer ScienceTU DortmundGermany

Personalised recommendations