Moving Up and Down in the Generic Multiverse

  • Joel David Hamkins
  • Benedikt Löwe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7750)

Abstract

We investigate the modal logic of the generic multiverse which is a bimodal logic with operators corresponding to the relations “is a forcing extension of” and “is a ground model of”. The fragment of the first relation is the modal logic of forcing and was studied by the authors in earlier work. The fragment of the second relation is the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esakia, L., Löwe, B.: Fatal Heyting algebras and forcing persistent sentences. Studia Logica 100(1-2), 163–173 (2012)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Friedman, S., Fuchino, S., Sakai, H.: On the set-generic multiverse (submitted, 2012)Google Scholar
  3. 3.
    Fuchs, G.: Closed maximality principles: implications, separations and combinations. Journal of Symbolic Logic 73(1), 276–308 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Fuchs, G.: Combined maximality principles up to large cardinals. Journal of Symbolic Logic 74(3), 1015–1046 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fuchs, G., Hamkins, J.D., Reitz, J.: Set-theoretic geology (submitted, 2011)Google Scholar
  6. 6.
    Hamkins, J.D.: A simple maximality principle. Journal of Symbolic Logic 68(2), 527–550 (2003)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hamkins, J.D.: The Ground Axiom. Oberwolfach Reports 2(4), 3160–3162 (2005)Google Scholar
  8. 8.
    Hamkins, J.D.: Some Second Order Set Theory. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 36–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Hamkins, J.D.: The set-theoretic multiverse. Review of Symbolic Logic 5, 416–449 (2012), doi:10.1017/S1755020311000359MATHCrossRefGoogle Scholar
  10. 10.
    Hamkins, J.D., Leibman, G., Löwe, B.: Structural connections between a forcing class and its modal logic (submitted, 2012)Google Scholar
  11. 11.
    Hamkins, J.D., Löwe, B.: The modal logic of forcing. Transactions of the American Mathematical Society 360(4), 1793–1817 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hamkins, J.D., Woodin, W.H.: The necessary maximality principle for c.c.c. forcing is equiconsistent with a weakly compact cardinal. Mathematical Logic Quarterly 51(5), 493–498 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Jech, T.: Set Theory, 3rd edn. Springer Monographs in Mathematics. Springer, Heidelberg (2003)MATHGoogle Scholar
  14. 14.
    Laver, R.: Certain very large cardinals are not created in small forcing extensions. Annals of Pure and Applied Logic 149(1-3), 1–6 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Leibman, G.: Consistency strengths of modified maximality principles. PhD thesis, City University of New York (2004)Google Scholar
  16. 16.
    Leibman, G.: The consistency strength of \({\rm MP}_{\rm CCC}(\Bbb R)\). Notre Dame Journal of Formal Logic 51(2), 181–193 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Reitz, J.: The Ground Axiom. PhD thesis, City University of New York (September 2006)Google Scholar
  18. 18.
    Reitz, J.: The Ground Axiom. Journal of Symbolic Logic 72(4), 1299–1317 (2007)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Rittberg, C.J.: The modal logic of forcing. Master’s thesis, Westfälische Wilhelms-Universität Münster (2010)Google Scholar
  20. 20.
    van Benthem, J.F.A.K.: The logic of time. A model-theoretic investigation into the varieties of temporal ontology and temporal discourse. Synthese Library, vol. 156. D. Reidel Publishing Co., Dordrecht (1983)MATHGoogle Scholar
  21. 21.
    Woodin, W.H.: The continuum hypothesis, the generic multiverse of sets, and the ω conjecture (2009) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joel David Hamkins
    • 1
    • 2
  • Benedikt Löwe
    • 3
    • 4
  1. 1.Mathematics ProgramThe Graduate Center of the City University of New YorkNew YorkUnited States of America
  2. 2.Department of MathematicsCollege of Staten Island of CUNYStaten IslandUnited States of America
  3. 3.Institute for Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands
  4. 4.Department MathematikUniversität HamburgHamburgGermany

Personalised recommendations