Constructive Decision Theory

(Extended Abstract)
  • Lawrence E. Blume
  • David A. Easley
  • Joseph Y. Halpern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7750)

Abstract

Most models of decisionmaking under uncertainty describe a decision environment with a set of states and a set of outcomes. Objects of choice are acts, functions from states to outcomes. The decision maker (DM) holds a preference relation on the set of all such functions. Representation theorems characterize those preference relations with utility functions on acts that separate (more or less) tastes on outcomes from beliefs on states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, D.: Ambiguity without a state space. Review of Economic Studies (2007) (forthcoming)Google Scholar
  2. 2.
    Ahn, D., Ergin, H.: Framing contingencies (2007) (unpublished manuscript)Google Scholar
  3. 3.
    Dekel, E., Lipman, B., Rustichini, A.: Representing preferences with a unique subjective state space. Econometrica 69, 891–934 (2001)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ellsberg, D.: Risk, Ambiguity and Decision. Garland Publishing, Inc., New York (2001)Google Scholar
  5. 5.
    Ghirardato, P.: Coping with ignorance: unforeseen contingencies and non-additive uncertainty. Economic Theory 17, 247–276 (2001)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gilboa, I., Schmeidler, D.: Subjective distributions. Theory and Decision 56, 345–357 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Karni, E.: Subjective expected utility theory without states of the world. Journal of Mathematical Economics 42, 325–342 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, vol 1: Additive and Polynomial Representations. Academic Press, New York (1971)Google Scholar
  9. 9.
    Kreps, D.: Static choice and unforeseen contingencies. In: Dasgupta, P., Gale, D., Hart, O. (eds.) Economic Analysis of Markets and Games: Essays in Honor of Frank Hahn. MIT Press, Cambridge (1992)Google Scholar
  10. 10.
    Machina, M.: States of the world and state of decision theory. In: Meyer, D. (ed.) The Economics of Risk. W. E. Upjohn Institute (2006)Google Scholar
  11. 11.
    Savage, L.J.: Foundations of Statistics. Wiley, New York (1954)MATHGoogle Scholar
  12. 12.
    Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty 5, 297–323 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Tversky, A., Koehler, D.J.: Support theory: A nonextensional representation of subjective probability. Psychological Review 101(4), 547–567 (1994)CrossRefGoogle Scholar
  15. 15.
    Wakker, P., Tversky, A.: An axiomatization of cumulative prospect theory. Journal of Risk and Uncertainty 7(7), 147–176 (1993)MATHCrossRefGoogle Scholar
  16. 16.
    Weibull, J.: Testing game theory. In: Huck, S. (ed.) Advances in Understanding Strategic Behavior: Game Theory, Experiments and Bounded Rationality. Essays in Honor of Werner Güth, pp. 85–104. Palgrave MacMillan (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lawrence E. Blume
    • 1
  • David A. Easley
    • 1
  • Joseph Y. Halpern
    • 2
  1. 1.Economics DepartmentCornell UniversityIthacaUSA
  2. 2.Computer Science DepartmentCornell UniversityIthacaUSA

Personalised recommendations