Cryptographically Strong de Bruijn Sequences with Large Periods

  • Kalikinkar Mandal
  • Guang Gong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7707)


In this paper we first refine Mykkeltveit et al.’s technique for producing de Bruijn sequences through compositions. We then conduct an analysis on an approximation of the feedback functions that generate de Bruijn sequences. The cycle structures of the approximated feedback functions and the linear complexity of a sequence produced by an approximated feedback function are determined. Furthermore, we present a compact representation of an (n + 16)-stage nonlinear feedback shift register (NLFSR) and a few examples of de Bruijn sequences of period 2 n ,  35 ≤ n ≤ 40, which are generated by the recursively constructed NLFSR together with the evaluation of their implementation.


de Bruijn sequences nonlinear feedback shift registers pseudorandom sequence generators span n sequences compositions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, A.H., Games, R.A.: On the Quadratic Spans of de Bruijn Sequences. IEEE Transactions on Information Theory 36(4), 822–829 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chan, A.H., Games, R.A., Key, E.L.: On the Complexities of de Bruijn Sequences. Journal of Combinatorial Theory, Series A 33(3), 233–246 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    de Bruijn, N.G.: A Combinatorial Problem. Proc. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)zbMATHGoogle Scholar
  4. 4.
    The eStream Project,
  5. 5.
    Etzion, T., Lempel, A.: Construction of de Bruijn Sequences of Minimal Complexity. IEEE Transactions on Information Theory 30(5), 705–709 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fredricksen, H.: A Survey of Full Length Nonlinear Shift Register Cycle Algorithms. SIAM Review 24(2), 195–221 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fredricksen, H.: A Class of Nonlinear de Bruijn Cycles. Journal of Combinatorial Theory, Series A 19(2), 192–199 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Golomb, S.W.: On the Classification of Balanced Binary Sequences of Period 2n − 1. IEEE Transformation on Information Theory 26(6), 730–732 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)Google Scholar
  10. 10.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2004)Google Scholar
  11. 11.
    Gong, G., Youssef, A.: Cryptographic Properties of the Welch-Gong Transformation Sequence Generators. IEEE Transactions on Information Theory 48(11), 2837–2846 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gong, G.: Randomness and Representation of Span n Sequences. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 192–203. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Good, I.J.: Normal Recurring Decimals. Journal of London Math. Soc. 21(3) (1946)Google Scholar
  14. 14.
    Green, D.H., Dimond, K.R.: Nonlinear Product-Feedback Shift Registers. Proceedings of the Institution of Electrical Engineers 117(4), 681–686 (1970)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Green, D.H., Dimond, K.R.: Some Polynomial Compositions of Nonlinear Feedback Shift Registers and their Sequence-Domain Consequences. Proceedings of the Institution of Electrical Engineers 117(9), 1750–1756 (1970)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jansen, C.J.A., Franx, W.G., Boekee, D.E.: An Efficient Algorithm for the Generation of de Bruijn Cycles. IEEE Transactions on Information Theory 37(5), 1475–1478 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kjeldsen, K.: On the Cycle Structure of a Set of Nonlinear Shift Registers with Symmetric Feedback Functions. Journal Combinatorial Theory Series A 20, 154–169 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Lempel, A.: On a Homomorphism of the de Bruijn Graph and its Applications to the Design of Feedback Shift Registers. IEEE Transactions on Computers C-19(12), 1204–1209 (1970)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mandal, K., Gong, G.: Probabilistic Generation of Good Span n Sequences from Nonlinear Feedback Shift Registers. CACR Technical Report (2012)Google Scholar
  20. 20.
    Mayhew, G.L., Golomb, S.W.: Characterizations of Generators for Modified de Bruijn Sequences. Advanced Applied Mathematics 13(4), 454–461 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mykkeltveit, J., Siu, M.-K., Tong, P.: On the Cycle Structure of Some Nonlinear Shift Register Sequences. Information and Control 43(2), 202–215 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Rachwalik, T., Szmidt, J., Wicik, R., Zablocki, J.: Generation of Nonlinear Feedback Shift Registers with Special-Purpose Hardware. Report 2012/314, Cryptology ePrint Archive (2012),
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kalikinkar Mandal
    • 1
  • Guang Gong
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations