\(\textnormal{\textsc{TWINE}}\): A Lightweight Block Cipher for Multiple Platforms

  • Tomoyasu Suzaki
  • Kazuhiko Minematsu
  • Sumio Morioka
  • Eita Kobayashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7707)

Abstract

This paper presents a 64-bit lightweight block cipher \(\textnormal{\textsc{TWINE}}\) supporting 80 and 128-bit keys. \(\textnormal{\textsc{TWINE}}\) realizes quite small hardware implementation similar to the previous lightweight block cipher proposals, yet enables efficient software implementations on various CPUs, from micro-controllers to high-end CPUs. This characteristic is obtained by the use of generalized Feistel combined with an improved block shuffle, introduced at FSE 2010.

Keywords

lightweight block cipher generalized Feistel block shuffle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, D.J., Schwabe, P.: NEON crypto (2012), http://cr.yp.to/papers.html
  2. 2.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptology 7(4), 229–246 (1994)MATHCrossRefGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential cryptanalysis of the data encryption standard. Springer, London (1993)MATHCrossRefGoogle Scholar
  5. 5.
    Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)MATHGoogle Scholar
  6. 6.
    Biryukov, A., Nikolić, I.: Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various Platforms. SPEED-CC – Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers (2009), http://www.hyperelliptic.org/SPEED/
  10. 10.
    Brumley, B.B.: Secure and Fast Implementations of Two Involution Ciphers. Cryptology ePrint Archive, Report 2010/152 (2010), http://eprint.iacr.org/
  11. 11.
    Calik, C.: An Efficient Software Implementation of Fugue. Second SHA-3 Candidate Conference (2010), http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/index.html
  12. 12.
    Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, Gaj (eds.) [15], pp. 272–288Google Scholar
  13. 13.
    Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of Reduced-Round Camellia-192 and Camellia-256. In: Parampalli, Hawkes (eds.) [32], pp. 16–33Google Scholar
  15. 15.
    Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg (2009)MATHGoogle Scholar
  16. 16.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In: Preneel, Takagi (eds.) [35], pp. 326–341Google Scholar
  19. 19.
    Hamburg, M.: Accelerating AES with Vector Permute Instructions. In: Clavier, Gaj (eds.) [15], pp. 18–32Google Scholar
  20. 20.
    Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible Differential Cryptanalysis for Block Cipher Structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A Block Cipher for IC-Printing. In: Mangard, Standaert (eds.) [27], pp. 16–32Google Scholar
  23. 23.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Variants. In: Biryukov (ed.) [5], pp. 196–210Google Scholar
  24. 24.
    Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible Differential Attacks on Reduced-Round LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 97–108. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Mace, F., Standaert, F.X., Quisquater, J.J.: ASIC Implementations of the Block Cipher SEA for Constrained Applications. Proceedings of the Third International Conference on RFID Security (2007), http://www.rfidsec07.etsit.uma.es/confhome.html
  27. 27.
    Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Heidelberg (2010)MATHGoogle Scholar
  28. 28.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Minematsu, K., Suzaki, T., Shigeri, M.: On Maximum Differential Probability of Generalized Feistel. In: Parampalli, Hawkes (eds.) [32], pp. 89–105Google Scholar
  30. 30.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Parampalli, U., Hawkes, P. (eds.): ACISP 2011. LNCS, vol. 6812. Springer, Heidelberg (2011)MATHGoogle Scholar
  33. 33.
    Poschmann, A.: Lightweight Cryptography - Cryptographic Engineering for a Pervasive World. Cryptology ePrint Archive, Report 2009/516 (2009), http://eprint.iacr.org/
  34. 34.
    Poschmann, A., Ling, S., Wang, H.: 256 Bit Standardized Crypto for 650 GE - GOST Revisited. In: Mangard, Standaert (eds.) [27], pp. 219–233Google Scholar
  35. 35.
    Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011)MATHGoogle Scholar
  36. 36.
    Rinne, S.: Performance Analysis of Contemporary Light-Weight Cryptographic Algorithms on a Smart Card Microcontroller. SPEED – Software Performance Enhancement for Encryption and Decryption (2007), http://www.hyperelliptic.org/SPEED/start07.html
  37. 37.
    Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Contemporary Lightweight Block Ciphers on 8-bit Microcontrollers. SPEED-CC – Software Performance Enhancement for Encryption and Decryption and Cryptographic Compilers (2009), http://www.hyperelliptic.org/SPEED/
  38. 38.
    Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  40. 40.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An Ultra-Lightweight Blockcipher. In: Preneel, Takagi (eds.) [35], pp. 342–357Google Scholar
  41. 41.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher CLEFIA (Extended Abstract). In: Biryukov (ed.) [5], pp. 181–195Google Scholar
  42. 42.
    Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  43. 43.
    Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible Differential Cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 398–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  44. 44.
    Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  45. 45.
    Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomoyasu Suzaki
    • 1
  • Kazuhiko Minematsu
    • 1
  • Sumio Morioka
    • 1
  • Eita Kobayashi
    • 1
  1. 1.NEC CorporationNakahara-KuJapan

Personalised recommendations