Skip to main content

Zellkulturmedien

  • Chapter
Book cover Zell- und Gewebekultur

Zusammenfassung

In der Frühphase der Zell- und Gewebekultur wurden zur Anzucht der Gewebeexplantate ausschließlich biologische Flüssigkeiten, wie Gerinnsel aus Froschlymphe, Plasmagerinnsel, Embryonalextrakte u. Ä. verwendet (s. Einleitung).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Anderson N.L. and Anderson N.G.The human plasma proteome. History, character, and diagnostic prospects. Mol. Cell. Proteomics 1: 845–867, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Anderson N.L., Polanski M., Pieper R., Gatlin T. et al. The human plasma proteome. Mol. Cell. Proteomics 3: 311–326, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Barnes D., McKeehan W.L. and Sato G.H. Cellular endocrinology: Integrated physiology in vitro. In Vitro Cell. Dev. Biol. 23: 659–662, 1987.

    Article  CAS  Google Scholar 

  • Barngrover D., Thomas J. and Thilly W.G. High density mammalian cell growth in Leibovitz bicarbonate-free medium: effects of fructose and galactose on culture biochemistry. J. Cell Sci. 78: 173–189, 1985.

    PubMed  CAS  Google Scholar 

  • Belford D.A., Rogers M.-L., Regester G.O., Francis G.L., Smithers G.W., Liepe I.J., Priebe I.K and Ballard F.J. Milk-derived growth factors as serum supplements for the growth of fibroblasts and epithelial cells. In Vitro Cell. Dev. Biol. 31: 752–760, 1995.

    Article  CAS  Google Scholar 

  • Bettger W.J. and McKeehan W.L. Mechanisms of cellular nutrition. Physiol. Rev. 66: 1–35 1986.

    PubMed  CAS  Google Scholar 

  • Brunner D., Frank J., Appl H., Schöffl H., Pfaller W. and Gstraunthaler G. Serum-free cell culture: The serum-free media interactive online database. ALTEX 27: 53–62, 2010.

    PubMed  Google Scholar 

  • Butler M. (Ed.). Mammalian Cell Biotechnology. A Practical Approach. Oxford University Press, 1991.

    Google Scholar 

  • Butler M. Animal Cell Culture & Technology. 2nd Ed., BIOS Scientific Publishers, 2004.

    Google Scholar 

  • Butler M. and Jenkins H. Nutritional aspects of the growth of animal cells in culture. J. Biotechnol. 12: 97–110, 1989.

    Article  CAS  Google Scholar 

  • Chen G., Gulbranson D.R., Hou Z., Bolin J.M., Ruotti V. et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods 8: 424–429, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Davis J.M. Basic Cell Culture. 2nd Ed., Oxford Univ. Press, 2002.

    Google Scholar 

  • Davis J.M. Animal Cell Culture. Essential Methods. Wiley-Blackwell, 2011.

    Google Scholar 

  • Dormont D. Transmissible spongiform encephalopathy agents and animal sera. Dev. Biol. Stand. 99: 25–34, 1999.

    PubMed  CAS  Google Scholar 

  • Eloit M. Risks of virus transmission associated with animal sera or substitutes and methods of control. Dev. Biol. Stand. 99: 9–16, 1999.

    PubMed  CAS  Google Scholar 

  • Even M.S., Sandusky C.B. and Barnard N.D. Serum-free hybridoma culture: ethical, scientific and safety considerations. Trends Biotechnol. 24: 105–108, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Falkner E., Appl H., Eder C., Losert U.M., Schöffl H. and Pfaller W. Serum free cell culture: the free access online database. Toxicol. In Vitro 20: 395–400, 2006.

    Article  CAS  Google Scholar 

  • Focus on Alternatives, UK, http://www.focusonalternatives.org.uk/

  • Francis G.L. Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62: 1–16, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Freshney R.I. Culture of Animal Cells. A Manual of Basic Technique and Specialized Application. 6th Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2010.

    Chapter  Google Scholar 

  • Froud S.J. The development, benefits and disadvantages of serum-free media. Dev. Biol. Stand. 99: 157–166, 1999.

    PubMed  CAS  Google Scholar 

  • Fujimoto B. Fetal bovine serum — supply vs. demand? Art to Science 21(1): 1–4, 2002.

    Google Scholar 

  • Galbraith D.N. Transmissible spongiform encephalopathies and tissue cell culture. Cytotechnology 39: 117–124, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert S.F. and Migeon B.R. D-Valine as a selective agent for normal human and rodent epithelial cells in culture. Cell 5: 11–17, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert S.F. and Migeon B.R. Renal enzymes in kidney cells selected by D-valine medium. J. Cell. Physiol. 92: 161–168, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20: 275–281, 2003.

    PubMed  Google Scholar 

  • Gstraunthaler G. and Handler J.S. Isolation, growth, and characterization of a gluconeogenic strain of renal cells. Am. J. Physiol. 252: C232–C238, 1987.

    PubMed  CAS  Google Scholar 

  • Gstraunthaler G. The Bologna Statement on Good Cell Culture Practice (GCCP) — 10 years later. Proceedings of the 7th World Congress on Alternatives & Animal Use in the Life Sciences, Rome, Italy, 2009. ALTEX 27 (Special Issue): 141–146, 2010.

    Google Scholar 

  • Gstraunthaler G., Harris H.W. and Handler J.S. Precursors of ribose-5-phosphate suppress expression of glucose-regulated proteins in LLC-PK1 cells. Am. J. Physiol. 252: C239–C243, 1987.

    PubMed  CAS  Google Scholar 

  • Gstraunthaler G., Landauer F. and Pfaller W. Ammoniagenesis in renal cell culture. Lack of extracellular ammoniagenesis at the apical surface of LLC-PK1 epithelia. Renal Physiol. Biochem. 16: 203–211, 1993.

    PubMed  CAS  Google Scholar 

  • Ham R.G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29: 515–526, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Ham R.G. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci USA 53: 288–293, 1965.

    Article  PubMed  CAS  Google Scholar 

  • Ham R.G. and McKeehan W.L. Media and growth requirements. Methods Enzymol. 58:44–93, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi I. and Sato G.H. Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259: 132–134, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Hodge G. Media development for mammalian cell culture. BioPharm. Int. 18, May 1, 2005.

    Google Scholar 

  • Hodgson J. Checking sources: the serum supply secret. Nature Biotechnol. 9: 1320–1324, 1991.

    Article  CAS  Google Scholar 

  • Hodgson J. Fetal bovine serum revisited. Nature Biotechnol. 11: 49–53, 1993.

    Article  CAS  Google Scholar 

  • Hodgson J. To treat or not to treat: That is the question for serum. Natrure Biotechnol. 13: 333–343, 1995.

    Article  CAS  Google Scholar 

  • Imamura T., Crespi C.L., Thilly W.G. and Brunengraber H. Fructose as a carbohydrate source yields stable pH and redox parameters in microcarrier cell culture. Anal. Biochem. 124: 353–358, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Jayme D.W. and Smith S.R. Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology 33: 27–36, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Jayme D.W., Epstein D.A. and Conrad D.R. Fetal bovine serum alternatives. Nature 334: 547–548, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Jayme D., Watanabe T. and Shimada T. Basal medium development for serum-free culture: a historical perspective. Cytotechnology 23: 95–101, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jochems C.E.A., van derValk J.B.F., Stafleu F.R. and Baumans V. The use of fetal bovine serum: ethical or scientific problem? ATLA 30: 219–227, 2002.

    PubMed  CAS  Google Scholar 

  • Klagsbrun M. Bovine colostrum supports the serum-free proliferation of epithelial cells but not of fibroblasts in long-term culture. J. Cell Biol. 84: 808–814, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Keenan J., Pearson D. and Clynes M.The role of recombinant proteins in the development of serum-free media. Cytotechnology 50: 49–56, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Leibovitz A. The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere. Am. J. Hyg. 78: 173–180, 1963.

    PubMed  CAS  Google Scholar 

  • Levintow L. and Eagle H. Biochemistry of cultured mammalian cells. Annu. Rev. Biochem. 30: 605–640, 1961.

    Article  CAS  Google Scholar 

  • Masters J.R.W. Animal Cell Culture. A Practical Approach. 3rd Ed., Oxford Univ. Press, Oxford, 2000.

    Google Scholar 

  • McCoy T.A., Maxwell M. and Kruse P.F. Amino acid requirements of the Novikoff hepatoma in vitro. Proc. Soc. Exp. Biol. Med. 100: 115–118, 1959.

    Article  PubMed  CAS  Google Scholar 

  • Merten O.-W. Safety issues of animal products used in serum-free media. Dev. Biol. Stand. 99: 167–180, 1999.

    PubMed  CAS  Google Scholar 

  • Merten O.-W. Virus contamination of cell cultures — a biotechnological view. Cytotechnology 39: 91–116, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Morgan M.J. and Faik P. Carbohydrate metabolism in cultured animal cells. Bioscience Rep. 1: 669–686, 1981.

    Article  CAS  Google Scholar 

  • Morton H.J. A survey of commercially available tissue culture media. In Vitro 6: 89–108, 1970.

    Article  CAS  Google Scholar 

  • Muzik H., Shea M.E., Lin C.C., Jamro H., Cassol S., Jerry L.M. and Bryant L. Adaptation of human long-term B lymphoblastoid cell lines to chemicall defined, serum-free media. In Vitro 18: 515–524, 1982.

    Article  CAS  Google Scholar 

  • Pakkanen R. and Neutra M. Bovine colostrum ultrafiltrate: an effective supplement of the culture of mouse-mouse hybridoma cells. J. Immunol. Meth. 169: 63–71, 1994.

    Article  CAS  Google Scholar 

  • Pazos P., Boveri M., Gennari A., Casado J., Fernandez F. and Prieto P. Culturing cells without serum: lessons learnt using molecules of plant origin. ALTEX 21: 67–72, 2004.

    PubMed  Google Scholar 

  • Pieper R., Gatlin C.L., Makusky A.J., Russo P.S. et al. The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3: 1345–1364, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Pollack R. (Ed.). Readings in Mammalian Cell Culture. 2nd Ed., Cold Spring Harbor Laboratory, 1981.

    Google Scholar 

  • Price P.J. and Gregory E.A. Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro 18: 576–584, 1982.

    Article  CAS  Google Scholar 

  • Psychogios N., Hau D.D., Peng J., Guo A.C., Mandal R. et al. The human serum metabolome. PloS One 6: e16957, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Rauch C., Feifel E., Amann E.-M., Spötl H.P., Schennach H., Pfaller W. and Gstraunthaler G. Alternatives to the use of fetal bovine serum: Human platelet lysates as a serum substitute in cell culture media. ALTEX 28: 305–316, 2011.

    PubMed  Google Scholar 

  • Reitzer L.J., Wice B.M. and Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254: 2669–2676, 1979.

    PubMed  CAS  Google Scholar 

  • Steimer K.S., Packard R., Holden D. and Klagsbrun M. The serum-free growth of cultured cells in bovine colostrum and in milk obtained later in the lactation period. J. Cell. Physiol. 109: 223–234, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Taub M. The use of defined media in cell and tissue culture. Toxicol. in Vitro 4: 213–225, 1990.

    Article  CAS  Google Scholar 

  • van der Valk J., Mellor D., Brands R., Fischer R., Gruber F., Gstraunthaler G., Hellebrekers L., Hyllner J., Jonker F.H., Prieto P., M. Thalen and V. Baumans. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol. in Vitro 18: 1–12, 2004.

    Article  Google Scholar 

  • van der Valk J., Brunner D., De Smet K., FexSvenningsen Å., Honegger P., Knudsen L.E., Lindl T., Noraberg J., Price A., Scarino M.L. and Gstraunthaler G. Optimization of chemically defined cell culture media — Replacing fetal bovine serum in mammalian in vitro methods. Toxicol. In Vitro 24: 1053–1063, 2010.

    Article  Google Scholar 

  • Wessman S.J. and Levings R.L. Benefits and risks due to animal serum used in cell culture production. Dev. Biol. Stand. 99: 3–8, 1999.

    PubMed  CAS  Google Scholar 

  • Wice B.M., Reitzer L.J. and Kennell D.The continuous growth of vertebrate cells in the absence of sugar. J. Biol. Chem. 256: 7812–7819, 1981.

    PubMed  CAS  Google Scholar 

  • Wolffe A.P. and Tata J.R. Primary culture, cellular stress and differentiated function. FEBS Lett. 176: 8–15, 1984.

    Article  PubMed  CAS  Google Scholar 

  • zet — Zentrum für Ersatz-und Ergänzungsmethoden zu Tierversuchen, Linz, http://www.zet.or.at/

  • Zielke H.R., Zielke C.L.and Ozand P.T. Glutamine: a major energy source for cultured mammalian cells. Federation Proc. 43: 121–125, 1984.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gstraunthaler, G., Lindl, T. (2013). Zellkulturmedien. In: Zell- und Gewebekultur. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35997-2_6

Download citation

Publish with us

Policies and ethics